57 research outputs found

    Hydrothermal Stamp on the Oceans

    Get PDF
    The composition of the oceans is altered by hydrothermal circulation. These chemical factories sustain microbial life, which in turn alters the chemistry of the fuids that enter the ocean. A decade of research details this complex interchange

    Significant discharge of CO2 from hydrothermalism associated with the submarine volcano of El Hierro Island

    Get PDF
    The residual hydrothermalism associated with submarine volcanoes, following an eruption event, plays an important role in the supply of CO2 to the ocean. The emitted CO2 increases the acidity of seawater. The submarine volcano of El Hierro, in its degasification stage, provided an excellent opportunity to study the effect of volcanic CO2 on the seawater carbonate system, the global carbon flux, and local ocean acidification. A detailed survey of the volcanic edifice was carried out using seven CTD-pH-ORP tow-yo studies, localizing the redox and acidic changes, which were used to obtain surface maps of anomalies. In order to investigate the temporal variability of the system, two CTD-pH-ORP yo-yo studies were conducted that included discrete sampling for carbonate system parameters. Meridional tow-yos were used to calculate the amount of volcanic CO2 added to the water column for each surveyed section. The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 105 ± 1.1 105 kg d−1 which is ~0.1% of global volcanic CO2 flux. Finally, the CO2 emitted by El Hierro increases the acidity above the volcano by ~20%.En prens

    Diversity and abundance of ammonia-oxidizing prokaryotes in sediments from the coastal Pearl River estuary to the South China Sea

    Get PDF
    In the present study the diversity and abundance of nitrifying microbes including ammonia-oxidizing archaea (AOA) and betaproteobacteria (beta-AOB) were investigated, along with the physicochemical parameters potentially affecting them, in a transect of surface sediments from the coastal margin adjacent to the Pearl River estuary to the slope in the deep South China Sea. Nitrifying microbial diversity was determined by detecting the amoA (ammonia monooxygenase subunit A) gene. An obvious community structure shift for both AOA and beta-AOB from the coastal marginal areas to the slope in the deep-sea was detected, while the OTU numbers of AOA amoA were more stable than those of the beta-AOB. The OTUs of beta-AOB increased with the distance from the coastal margin areas to the slope in the deep-sea. Beta-AOB showed lower diversity with dominant strains in a polluted area but higher diversity without dominant strains in a clean area. Moreover, the diversity of beta-AOB was correlated with pH values, while no noticeable relationships were established between AOA and physicochemical parameters. Beta-AOB was more sensitive to transect environmental variability and might be a potential indicator for environmental changes. Additionally, the surface sediments surveyed in the South China Sea harboured diverse and distinct AOA and beta-AOB phylotypes different from other environments, suggesting the endemicity of some nitrifying prokaryotes in the South China Sea

    The rise and fall of methanotrophy following a deepwater oil-well blowout

    Get PDF
    The blowout of the Macondo oil well in the Gulf of Mexico in April 2010 injected up to 500,000 tonnes of natural gas, mainly methane, into the deep sea1. Most of the methane released was thought to have been consumed by marine microbes between July and August 20102, 3. Here, we report spatially extensive measurements of methane concentrations and oxidation rates in the nine months following the spill. We show that although gas-rich deepwater plumes were a short-lived feature, water column concentrations of methane remained above background levels throughout the rest of the year. Rates of microbial methane oxidation peaked in the deepwater plumes in May and early June, coincident with a rapid rise in the abundance of known and new methane-oxidizing microbes. At this time, rates of methane oxidation reached up to 5,900 nmol l−1 d−1—the highest rates documented in the global pelagic ocean before the blowout4. Rates of methane oxidation fell to less than 50 nmol l−1 d−1 in late June, and continued to decline throughout the remainder of the year. We suggest the precipitous drop in methane consumption in late June, despite the persistence of methane in the water column, underscores the important role that physiological and environmental factors play in constraining the activity of methane-oxidizing bacteria in the Gulf of Mexico

    Phylogenetic Diversity and Ecological Pattern of Ammonia-oxidizing Archaea in the Surface Sediments of the Western Pacific

    Get PDF
    The phylogenetic diversity of ammonia-oxidizing archaea (AOA) was surveyed in the surface sediments from the northern part of the South China Sea (SCS). The distribution pattern of AOA in the western Pacific was discussed through comparing the SCS with other areas in the western Pacific including Changjiang Estuary and the adjacent East China Sea where high input of anthropogenic nitrogen was evident, the tropical West Pacific Continental Margins close to the Philippines, the deep-sea methane seep sediments in the Okhotsk Sea, the cold deep sea of Northeastern Japan Sea, and the hydrothermal field in the Southern Okinawa Trough. These various environments provide a wide spectrum of physical and chemical conditions for a better understanding of the distribution pattern and diversities of AOA in the western Pacific. Under these different conditions, the distinct community composition between shallow and deep-sea sediments was clearly delineated based on the UniFrac PCoA and Jackknife Environmental Cluster analyses. Phylogenetic analyses showed that a few ammonia-oxidizing archaeal subclades in the marine water column/sediment clade and endemic lineages were indicative phylotypes for some environments. Higher phylogenetic diversity was observed in the Philippines while lower diversity in the hydrothermal vent habitat. Water depth and possibly with other environmental factors could be the main driving forces to shape the phylogenetic diversity of AOA observed, not only in the SCS but also in the whole western Pacific. The multivariate regression tree analysis also supported this observation consistently. Moreover, the functions of current and other climate factors were also discussed in comparison of phylogenetic diversity. The information collectively provides important insights into the ecophysiological requirements of uncultured ammonia-oxidizing archaeal lineages in the western Pacific Ocean

    Enrichment and characterization of ammonia-oxidizing archaea from the open ocean : phylogeny, physiology and stable isotope fractionation

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in The ISME Journal 5 (2011): 1796–1808, doi:10.1038/ismej.2011.58.Archaeal genes for ammonia oxidation are widespread in the marine environment, but direct physiological evidence for ammonia oxidation by marine archaea is limited. We report the enrichment and characterization of three strains of pelagic ammonia-oxidizing archaea (AOA) from the north Pacific Ocean that have been maintained in laboratory culture for over three years. Phylogenetic analyses indicate the three strains belong to a previously identified clade of water column-associated AOA and possess 16S rRNA genes and ammonia monooxygenase subunit a (amoA) genes highly similar (98-99% identity) to those recovered in DNA and cDNA clone libraries from the open ocean. The strains grow in natural seawater-based liquid medium while stoichiometrically converting ammonium (NH4 +) to nitrite (NO2 -). Ammonia oxidation by the enrichments is only partially inhibited by allylthiourea at concentrations known to inhibit cultivated ammonia-oxidizing bacteria. The three strains were used to determine the nitrogen stable isotope effect (15εNH3) during archaeal ammonia oxidation, an important parameter for interpreting stable isotope ratios in the environment. Archaeal 15εNH3 ranged from 13- 41‰, within the range of that previously reported for ammonia-oxidizing bacteria. Despite low amino acid identity between the archaeal and bacterial Amo proteins, their functional diversity as captured by 15εNH3 is similar.This work was supported by a Woods Hole Oceanographic Institution (WHOI) Postdoctoral Scholar fellowship to AES and the WHOI Ocean Life Institute

    Community shift of ammonia-oxidizing bacteria along an anthropogenic pollution gradient from the Pearl River Delta to the South China Sea

    Get PDF
    The phylogenetic diversity and abundance of ammonia-oxidizing beta-proteobacteria (beta-AOB) was analyzed along an anthropogenic pollution gradient from the coastal Pearl River Delta to the South China Sea using the ammonia monooxygenase subunit A (amoA) gene. Along the gradient from coastal to the open ocean, the phylogenetic diversity of the dominant genus changed from Nitrosomonas to Nitrosospira, indicating the niche specificity by these two genera as both salinity and anthropogenic influence were major factors involved. The diversity of bacterial amoA gene was also variable along the gradient, with the highest in the deep-sea sediments, followed by the marshes sediments and the lowest in the coastal areas. Within the Nitrosomonas-related clade, four distinct lineages were identified including a putative new one (A5-16) from the different sites over the large geographical area. In the Nitrosospira-related clade, the habitat-specific lineages to the deep-sea and coastal sediments were identified. This study also provides strong support that Nitrosomonas genus, especially Nitrosomonas oligotropha lineage (6a) could be a potential bio-indicator species for pollution or freshwater/wastewater input into coastal environments. A suite of statistical analyses used showed that water depth and temperature were major factors shaping the community structure of beta-AOB in this study area

    Mineralogical and geochemical analysis of Fe-phases in drill-cores from the Triassic Stuttgart Formation at Ketzin CO₂ storage site before CO₂ arrival

    Get PDF
    Reactive iron (Fe) oxides and sheet silicate-bound Fe in reservoir rocks may affect the subsurface storage of CO2 through several processes by changing the capacity to buffer the acidification by CO2 and the permeability of the reservoir rock: (1) the reduction of three-valent Fe in anoxic environments can lead to an increase in pH, (2) under sulphidic conditions, Fe may drive sulphur cycling and lead to the formation of pyrite, and (3) the leaching of Fe from sheet silicates may affect silicate diagenesis. In order to evaluate the importance of Fe-reduction on the CO2 reservoir, we analysed the Fe geochemistry in drill-cores from the Triassic Stuttgart Formation (Schilfsandstein) recovered from the monitoring well at the CO2 test injection site near Ketzin, Germany. The reservoir rock is a porous, poorly to moderately cohesive fluvial sandstone containing up to 2–4 wt% reactive Fe. Based on a sequential extraction, most Fe falls into the dithionite-extractable Fe-fraction and Fe bound to sheet silicates, whereby some Fe in the dithionite-extractable Fe-fraction may have been leached from illite and smectite. Illite and smectite were detected in core samples by X-ray diffraction and confirmed as the main Fe-containing mineral phases by X-ray absorption spectroscopy. Chlorite is also present, but likely does not contribute much to the high amount of Fe in the silicate-bound fraction. The organic carbon content of the reservoir rock is extremely low (<0.3 wt%), thus likely limiting microbial Fe-reduction or sulphate reduction despite relatively high concentrations of reactive Fe-mineral phases in the reservoir rock and sulphate in the reservoir fluid. Both processes could, however, be fuelled by organic matter that is mobilized by the flow of supercritical CO2 or introduced with the drilling fluid. Over long time periods, a potential way of liberating additional reactive Fe could occur through weathering of silicates due to acidification by CO2

    Seasonal variations in the nitrogen isotopic composition of settling particles at station K2 in the western subarctic North Pacific

    Get PDF
    Intensive observations using hydrographical cruises and moored sediment trap deployments during 2010 and 2012 at station K2 in the North Pacific western subarctic gyre (WSG) revealed seasonal changes in δ15N of both suspended and settling particles. Suspended particles (SUS) were collected from depths between the surface and 200 m; settling particles by drifting traps (DST; 100-200 m) and moored traps (MST; 200 and 500 m). All particles showed higher δ15N values in winter and lower in summer, contrary to the expected by isotopic fractionation during phytoplankton nitrate consumption. We suggest that these observed isotopic patterns are due to ammonium consumption via light-controlled nitrification, which could induce variations in δ15N(SUS) of 0.4-3.1 ‰ in the euphotic zone (EZ). The δ15N(SUS) signature was reflected by δ15 N(DST) despite modifications during biogenic transformation from suspended particles in the EZ. δ15 N enrichment (average: 3.6 ‰) and the increase in C:N ratio (by 1.6) in settling particles suggests year-round contributions of metabolites from herbivorous zooplankton as well as TEPs produced by diatoms. Accordingly, seasonal δ15 N(DST) variations of 2.4-7.0 ‰ showed a significant correlation with primary productivity (PP) at K2. By applying the observed δ15 N(DST) vs. PP regression to δ15 N(MST) of 1.9-8.0 ‰, we constructed the first annual time-series of PP changes in the WSG. Moreover, the monthly export ratio at 500 m was calculated using both estimated PP and measured organic carbon fluxes. Results suggest a 1.6 to 1.8 times more efficient transport of photosynthetically-fixed carbon to the intermediate layers occurs in summer/autumn rather than winter/spring
    corecore