20 research outputs found

    O równaniach funkcyjnych związanych z rozdzielnością implikacji rozmytych

    Get PDF
    In classical logic conjunction distributes over disjunction and disjunction distributes over conjunction. Moreover, implication is left-distributive over conjunction and disjunction: p ! (q ^ r) (p ! q) ^ (p ! r); p ! (q _ r) (p ! q) _ (p ! r): At the same time it is neither right-distributive over conjunction nor over disjunction. However, the following two equalities, that are kind of right-distributivity of implications, hold: (p ^ q) ! r (p ! r) _ (q ! r); (p _ q) ! r (p ! r) ^ (q ! r): We can rewrite the above four classical tautologies in fuzzy logic and obtain the following distributivity equations: I(x;C1(y; z)) = C2(I(x; y); I(x; z)); (D1) I(x;D1(y; z)) = D2(I(x; y); I(x; z)); (D2) I(C(x; y); z) = D(I(x; z); I(y; z)); (D3) I(D(x; y); z) = C(I(x; z); I(y; z)); (D4) that are satisfied for all x; y; z 2 [0; 1], where I is some generalization of classical implication, C, C1, C2 are some generalizations of classical conjunction and D, D1, D2 are some generalizations of classical disjunction. We can define and study those equations in any lattice L = (L;6L) instead of the unit interval [0; 1] with regular order „6” on the real line, as well. From the functional equation’s point of view J. Aczél was probably the one that studied rightdistributivity first. He characterized solutions of the functional equation (D3) in the case of C = D, among functions I there are bounded below and functions C that are continuous, increasing, associative and have a neutral element. Part of the results presented in this thesis may be seen as a generalization of J. Aczél’s theorem but with fewer assumptions on the functions F and G. As a generalization of classical implication we consider here a fuzzy implication and as a generalization of classical conjunction and disjunction - t-norms and t-conorms, respectively (or more general conjunctive and disjunctive uninorms). We study the distributivity equations (D1) - (D4) for such operators defined on different lattices with special focus on various functional equations that appear. In the first two sections necessary fuzzy logic concepts are introduced. The background and history of studies on distributivity of fuzzy implications are outlined, as well. In Sections 3, 4 and 5 new results are presented and among them solutions to the following functional equations (with different assumptions): f(m1(x + y)) = m2(f(x) + f(y)); x; y 2 [0; r1]; g(u1 + v1; u2 + v2) = g(u1; u2) + g(v1; v2); (u1; u2); (v1; v2) 2 L1; h(xc(y)) = h(x) + h(xy); x; y 2 (0;1); k(min(j(y); 1)) = min(k(x) + k(xy); 1); x 2 [0; 1]; y 2 (0; 1]; where: f : [0; r1] ! [0; r2], for some constants r1; r2 that may be finite or infinite, and for functions m2 that may be injective or not; g : L1 ! [1;1], for L1 = f(u1; u2) 2 [1;1]2 j u1 u2g (function g satisfies two-dimensional Cauchy equation extended to the infinities); h; c : (0;1) ! (0;1) and function h is continuous or is a bijection; k : [0; 1] ! [0; 1], g : (0; 1] ! [1;1) and function k is continuous. Most of the results in Sections 3, 4 and 5 are new and obtained by the author in collaboration with M. Baczynski, R. Ger, M. E. Kuczma or T. Szostok. Part of them have been already published either in scientific journals (see [5]) or in refereed papers in proceedings (see [4, 1, 2, 3])

    LassoProt: server to analyze biopolymers with lassos

    Get PDF
    The LassoProt server, http://lassoprot.cent.uw.edu.pl/, enables analysis of biopolymers with entangled configurations called lassos. The server offers various ways of visualizing lasso configurations, as well as their time trajectories, with all the results and plots downloadable. Broad spectrum of applications makes LassoProt a useful tool for biologists, biophysicists, chemists, polymer physicists and mathematicians. The server and our methods have been validated on the whole PDB, and the results constitute the database of proteins with complex lassos, supported with basic biological data. This database can serve as a source of information about protein geometry and entanglement-function correlations, as a reference set in protein modeling, and for many other purposes

    The Wasserstein Distance as a Dissimilarity Measure for Mass Spectra with Application to Spectral Deconvolution

    Get PDF
    We propose a new approach for the comparison of mass spectra using a metric known in the computer science under the name of Earth Mover\u27s Distance and in mathematics as the Wasserstein distance. We argue that this approach allows for natural and robust solutions to various problems in the analysis of mass spectra. In particular, we show an application to the problem of deconvolution, in which we infer proportions of several overlapping isotopic envelopes of similar compounds. Combined with the previously proposed generator of isotopic envelopes, IsoSpec, our approach works for a wide range of masses and charges in the presence of several types of measurement inaccuracies. To reduce the computational complexity of the solution, we derive an effective implementation of the Interior Point Method as the optimization procedure. The software for mass spectral comparison and deconvolution based on Wasserstein distance is available at https://github.com/mciach/wassersteinms

    Complex lasso : new entangled motifs in proteins

    Get PDF
    We identify new entangled motifs in proteins that we call complex lassos. Lassos arise in proteins with disulfide bridges (or in proteins with amide linkages), when termini of a protein backbone pierce through an auxiliary surface of minimal area, spanned on a covalent loop. We find that as much as 18% of all proteins with disulfide bridges in a non-redundant subset of PDB form complex lassos, and classify them into six distinct geometric classes, one of which resembles supercoiling known from DNA. Based on biological classification of proteins we find that lassos are much more common in viruses, plants and fungi than in other kingdoms of life. We also discuss how changes in the oxidation/reduction potential may affect the function of proteins with lassos. Lassos and associated surfaces of minimal area provide new, interesting and possessing many potential applications geometric characteristics not only of proteins, but also of other biomolecules

    KnotProt: a database of proteins with knots and slipknots

    Get PDF
    The protein topology database KnotProt, http://knotprot.cent.uw.edu.pl/, collects information about protein structures with open polypeptide chains forming knots or slipknots. The knotting complexity of the cataloged proteins is presented in the form of a matrix diagram that shows users the knot type of the entire polypeptide chain and of each of its subchains. The pattern visible in the matrix gives the knotting fingerprint of a given protein and permits users to determine, for example, the minimal length of the knotted regions (knot's core size) or the depth of a knot, i.e. how many amino acids can be removed from either end of the cataloged protein structure before converting it from a knot to a different type of knot. In addition, the database presents extensive information about the biological functions, families and fold types of proteins with non-trivial knotting. As an additional feature, the KnotProt database enables users to submit protein or polymer chains and generate their knotting fingerprint

    LinkProt : a database collecting information about biological links

    Get PDF
    Protein chains are known to fold into topologically complex shapes, such as knots, slipknots or complex lassos. This complex topology of the chain can be considered as an additional feature of a protein, separate from secondary and tertiary structures. Moreover, the complex topology can be defined also as one additional structural level. The LinkProt database (http://linkprot.cent.uw.edu.pl) collects and displays information about protein links - topologically non-trivial structures made by up to four chains and complexes of chains (e.g. in capsids). The database presents deterministic links (with loops closed, e.g. by two disulfide bonds), links formed probabilistically and macromolecular links. The structures are classified according to their topology and presented using the minimal surface area method. The database is also equipped with basic tools which allow users to analyze the topology of arbitrary (bio)polymers

    On the Sheffer stroke operation in fuzzy logic

    Get PDF
    From the beginnings of fuzzy logic, the Sheffer stroke operation has been overlooked and the efforts of the researchers have beendevoted to other logical connectives. In this paper, the Sheffer stroke operation is introduced in fuzzy logic generalizing the classical operation when the truth values are restricted to {0, 1}2. Similar to what happens in Boolean logic, the fuzzy Sheffer stroke is functionally complete and it can be used to generate any other fuzzy logical connective by combinations of itself. Two construction methods are presented and the close connection of this operation with a pair of fuzzy conjunction and negation is analysed

    Complex lasso: new entangled motifs in proteins

    Get PDF
    We identify new entangled motifs in proteins that we call complex lassos. Lassos arise in proteins with disulfide bridges (or in proteins with amide linkages), when termini of a protein backbone pierce through an auxiliary surface of minimal area, spanned on a covalent loop. We find that as much as 18% of all proteins with disulfide bridges in a non-redundant subset of PDB form complex lassos, and classify them into six distinct geometric classes, one of which resembles supercoiling known from DNA. Based on biological classification of proteins we find that lassos are much more common in viruses, plants and fungi than in other kingdoms of life. We also discuss how changes in the oxidation/reduction potential may affect the function of proteins with lassos. Lassos and associated surfaces of minimal area provide new, interesting and possessing many potential applications geometric characteristics not only of proteins, but also of other biomolecules

    AlphaKnot: server to analyze entanglement in structures predicted by AlphaFold methods

    Get PDF
    AlphaKnot is a server that measures entanglement in AlphaFold-solved protein models while considering pLDDT confidence values. AlphaKnot has two main functions: (i) providing researchers with a webserver for analyzing knotting in their own AlphaFold predictions and (ii) providing a database of knotting in AlphaFold predictions from the 21 proteomes for which models have been published prior to 2022. The knotting is defined in a probabilistic fashion. The knotting complexity of proteins is presented in the form of a matrix diagram which shows users the knot type for the entire polypeptide chain and for each of its subchains. The dominant knot types as well as the computed locations of the knot cores (i.e. minimal portions of protein backbones that form a given knot type) are shown for each protein structure. Based mainly on the pLDDT confidence values, entanglements are classified as Knots, Unsure, and Artifacts. The database portion of the server can be used, for example, to examine protein geometry and entanglement-function correlations, as a reference set for protein modeling, and for facilitating evolutional studies. The AlphaKnot server can be found at https://alphaknot.cent.uw.edu.pl/
    corecore