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Abstract
We propose a new approach for the comparison of mass spectra using a metric known in the
computer science under the name of Earth Mover’s Distance and in mathematics as the Wasser-
stein distance. We argue that this approach allows for natural and robust solutions to various
problems in the analysis of mass spectra. In particular, we show an application to the problem of
deconvolution, in which we infer proportions of several overlapping isotopic envelopes of similar
compounds. Combined with the previously proposed generator of isotopic envelopes, IsoSpec,
our approach works for a wide range of masses and charges in the presence of several types of
measurement inaccuracies. To reduce the computational complexity of the solution, we derive an
effective implementation of the Interior Point Method as the optimization procedure. The soft-
ware for mass spectral comparison and deconvolution based on Wasserstein distance is available
at https://github.com/mciach/wassersteinms.
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1 Introduction

Mass Spectrometry (MS) is one of the main analytical techniques of modern proteomics and
metabolomics, which allows for identification and quantification of molecular compounds. In
the first step, the particles are ionized; next, they are separated in an electromagnetic field
according to their mass to charge ratio (m/z), and finally, transferred to a detector. The
detected signal, usually proportional to the number of ions, is plotted against the corres-
ponding m/z value on a mass spectrum. A pair of detected m/z value and the corresponding
signal intensity is called a peak. The signal intensity is often referred to as ion current [11, 3].

The m/z value can be used to infer the chemical composition of molecules (see e.g. [1]),
but it does not give information about its chemical structure. To gain insight into the latter,
several measurement steps are performed in a technique called Tandem Mass Spectrometry
(Tandem MS). After each step, a range of m/z value is selected, and ions from that range
are subjected to fragmentation before the next measurement. The mass spectrum obtained
from the n-th measurement is referred to as an MSn spectrum.

Even though the MS1 spectrum is recorded prior to any fragmentation, a single com-
pound can give rise to several peaks. This is due to the natural occurrence of isotopes –
atoms with the same number of electrons and protons, but different numbers of neutrons.
Molecules which differ only in their isotopic compositions are termed isotopologues. A group
of peaks corresponding to isotopologues of a single molecule is referred to as an isotopic en-
velope (c.f. Fig. 1).

Tandem MS can be used to identify the molecule under study. There are two main
approaches to this task: de novo sequencing and database search. The first one strives to
identify the elemental composition and/or structure of the molecule purely based on the
mass spectrum of fragments. The second one searches a database of mass spectra obtained
from known molecules to find the most similar one [16, 24, 25].

To be able to search for a similar spectrum, either a similarity or a distance measure
needs to be employed. There are two main groups of such measures. The first one relies on
the number of matching peaks. Two peaks are said to match if their m/z values differ by
less than a given threshold. An example of such measure is the Jaccard score, equal to the
number of matching peaks divided by the number of distinct peaks in both spectra. The
second group of measures takes into account both the location and the intensities of peaks.
An example of such measure is the Euclidean distance or the correlation coefficient [16, 24].

Both groups are similar in the sense that they compare peaks with the same m/z value.
As a consequence, they are highly sensitive to even the slightest differences in chemical
formulas. For example, apigenin (C15H10O5) and quercetin (C15H10O7) are two molecules
which differ by two oxygen atoms (see Fig. 1). Even though this difference is relatively
small compared to the overall atom count, the MS1 spectra contain no matching peaks.
Consequently, the discussed measures do not detect any similarity between these molecules.
Some approaches make a preprocessing of spectra to infer an optimal pairwise matching of
peaks before computing the similarity [10].

Our contribution. In the present work, we propose a new measure which quantifies both the
differences in intensities and m/z values of peaks in a continuous way. As such, the measure
is more robust to changes in chemical formulas than the most common measures based on
peak matching. The measure is based on the concept of transporting the ion current between
the spectra. The distance between spectra is equal to the total distance in the m/z domain
covered by the current. This allows to express the distance between spectra in Daltons. This
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Figure 1 Molecular structures and MS1 spectra of apigenin (left) and quercetin (right) showing
their isotopic envelopes. Peak intensities have been normed to sum to 1. The mass spectra have
been downloaded from the MassBank database (MassBank IDs: TY000164, TY000119).

distance is known in the field of probability theory as the (first) Wasserstein metric, and in
the field of image processing as the Earth Mover’s distance. Under certain assumptions, it
can be computed in time linear in the number of distinct peaks in both spectra.

The Wasserstein distance allows to more accurately reflect the differences in chemical
compositions of the molecules; for example, the distance between the MS1 spectra from
Fig. 1 is equal to 31.48 Da, while the difference in their masses is equal to 32.19 Da. Apart
from quantifying the dissimilarity, the computed transport of ion current allows to match
corresponding peaks in the compared spectra, which aids in the detection of differences in
elemental composition and chemical structure (see Fig 2).

As a more advanced application of the Wasserstein distance, we show how it can be used
to efficiently solve the problem of mass spectral deconvolution, i.e. the problem of separating
overlapping isotopic envelopes.

Structure of the article. This article is structured as follows. In the next section, we
introduce the formal definition of the Wasserstein metric. We also give some examples of the
distance and the ion current transport between both experimental and in silico generated
spectra. In Section 3, we give a formal statement of the deconvolution problem and the
proposed solution based on the Wasserstein metric. Next, we show the results of computational
experiments on in silico generated spectra to assess the performance of the solution. The
results show that the Wasserstein distance allows for precise deconvolution in the presence of
measurement errors even when the isotopic envelopes show considerable overlap.

2 The Wasserstein distance

In this section we introduce the first Wasserstein distance for discrete probability measures
with finite support on Rd. It is known in the computer science community as the Earth
Mover’s Distance, and was successfully used in a variety of applications including image
processing [20]. In this article, we assume that the mass spectra are normalized so that the
peak intensities sum to 1. This allows to interpret them as discrete probability measures.

Let µ =
∑n
i=1 wiδxi

and ν =
∑m
j=1 vjδyj

be two discrete probability distributions, where
wi and vi are sets of weights, xi and yi are points in Rd, and δxi is the Dirac delta centered
at xi. Suppose that those measures describe the distribution of some mass, i.e. there is a
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mass of wi at point xi. Then, the Wasserstein distance can be defined as the minimal cost of
transporting all the mass given by µ onto the mass given by ν. An example of such transport
is given by Fig. 2.

Let γ(i, j) denote the amount of mass transported from the point xi to yj . This function is
referred to as a transport plan. Since all the mass from xi needs to be transported somewhere,
we have

∑m
j=1 γ(i, j) = wi. On the other hand, the mass at yj needs to be filled completely,

implying that
∑n
i=1 γ(i, j) = vj . This, combined with the non-negativity of the transport plan,

means that γ(i, j) can be interpreted as the joint probability distribution of the two measures.
Let Γ(µ, ν) denote the set of all possible transport plans between the measures µ and ν.

Then, the Wasserstein distance between the two measures, W1(µ, ν), is equal to the total
distance traversed by the mass under the optimal transport plan:

W1(µ, ν) = min
γ∈Γ(µ,ν)

n∑
i=1

m∑
j=1

γ(i, j)||xi − yj ||.

It is easy to see that the function W1 defined above is a metric on the space of discrete
probability measures with finite support. Furthermore, the above construction can be
extended to more general measures, underlying spaces and cost functions. For details we
refer our reader to [21].

In the applications to mass spectrometry data, we will be mainly interested in the W1
distance on the real line. This distance has the following important representation:

I Lemma 1 (Proposition 2.17 in [21]). Let µ and ν be two discrete probability measures with
finite support on real line R, and let Fµ and Fν be their cumulative distribution functions.
Then, we have:

W1(µ, ν) =
∫
R
|Fµ(x)− Fν(x)|dx

Based on the above Lemma, we can easily compute the distance W1(µ, ν) for finite
discrete probability measures corresponding to normalized mass spectra. A common way
of representing such a spectrum is a peak list, i.e. a list of pairs (xi, pi) such that xi are in
increasing order and represent m/z values of peaks with intensities pi.

Algorithm 1, adapted from [12], shows how to compute W1 for two such lists of peaks. It
is based on the observation that the absolute difference between the cumulative distribution
functions of mass spectra, |Fµ − Fν |, is a step function, and therefore it is easily integrable.
Furthermore, the value Fµ(x)− Fν(x) is equal to the surplus of the intensity in µ relative to
ν, which needs to be transported through the point x.

Note that the runtime of Algorithm 1 is O(n+m): in each iteration of the main loop
either i or j is incremented, no index variable will ever exceed the length of the corresponding
list, and the algorithm terminates when both indices have reached the end of their respective
lists.

2.1 Some basic properties
To help the reader gain some initial intuitions behind the Wasserstein distance, in this
short subsection we discuss some of its qualitative properties when applied to mass spectra.
In the next subsection, we illustrate some of the points discussed here by computational
experiments.

First, for MS1 spectra of two molecules, the Wasserstein distance is approximately equal
to the absolute mass difference of the molecules. The other main factor that influences
the distance in this case is the presence of measurement inaccuracies. Note, however, that
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Algorithm 1: Computation of Wasserstein distance between two spectra.
Data: Two lists, N, M, of pairs (x, p), containing the lists of peaks of respective

spectra
Result: W1 distance between given spectra

1 i← 0; j ← 0; ret← 0.0; γ ← an empty transport scheme
2 n← length(N);m← length(M)
3 while i < n ∨ j < m do
4 d← min(N [i].p,M [j].p)
5 ret← ret+ d · |N [i].x−M [j].x|
6 N [i].p← N [i].p− d
7 M [j].p←M [j].p− d
8 γ(i, j)← d

9 if 0 = N [i].p then
10 i← i+ 1
11 else
12 j ← j + 1
13 end
14 end
15 The variable ret contains the Wasserstein distance and γ the transport plan.

this influence remains small as long as the inacurracies in intensity measurements are small
compared to the corresponding peak intensities.

Usually, some inaccuracy in both the intensity and the mass measurement is present.
Naturally, the latter poses a major problem for measures based on peak matching. On the
other hand, the Wasserstein distance is not significantly influenced by small mass measurement
errors – instead, the imprecise measurement simply gets shifted to match its theoretical
counterpart.

The implicit assumption of this metric, which may not be desirable in some applications,
is that the mass difference reflects chemical difference. Therefore, two molecules differing by
an OH group are assumed to be more similar to each other than two molecules differing by
a C2H5 group. It is possible to relax this assumption by applying a different metric in the
mass domain, say c(x, y), in the definition of the Wasserstein distance:

Wc(µ, ν) = min
γ∈Γ(µ,ν)

n∑
i=1

m∑
j=1

γ(i, j)c(xi − yj).

An important caveat in this case is that treating all modifications as equivalent may lead
to unexpected results – notably, a protein being treated as a single carbon atom with an
extremely large modification. Furthermore, using other distances in the mass domain may
lead to difficult optimization problems. The use of absolute difference, |xi − yj |, allows to
avoid the optimization in the space of all possible transport plans.

If the two molecules differ by a modification which does not change their fragmentation
pattern, then the Wasserstein distance between their MS2 spectra will not exceed the weight
of the modification. This follows from the observation that the modification is present only
in some of the fragments, which account to a fraction of the total intensity in the spectrum.
Note that this is a highly idealized example, since modifications may significantly change
the fragmentation patterns and inflict a greater influence on the Wasserstein distance. In
general, however, this distance cannot exceed the mass of the heavier molecule.

WABI 2018
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Figure 2 The optimal ion current transport plan for MS2 spectra of apigenin (top) and quercetin
(bottom), fragmented using 30 eV collision energy. The colors on the quercetin mass spectrum
correspond to the origin of the transported ion current. The isotopic envelope of quercetin is shifted
by 32 Da, i.e. the mass of two oxygen atoms.

Lastly, the structure of the optimal transport plan is highly sensitive to chemical noise,
i.e. the presence of unexpected molecules. Recall that all the intensity from one spectrum
needs to be used to explain all the intensity of the second spectrum. Therefore, if one of the
analyzed spectra contains an additional peak, some of the intensity from the first spectrum
needs to be used to explain it. This may lead to global changes in the structure of the
optimal transport plan. It follows that in the presence of chemical noise, the Wasserstein
distance may not reflect the similarity between the analyzed compounds.

2.2 Case study
To quantitatively analyze the properties of the Wasserstein metric when applied to mass
spectral data, we have analyzed two sets of spectra obtained from the MassBank database [5].
In both cases, we have compared the performance of the Wasserstein distance with two other
popular approaches: the Euclidean distance and the Jaccard score (i.e. the ratio of matching
peaks to the total number of different peaks in both spectra). When analyzing those two
measures, the spectra were binned to 0.01 Da resolution to increase the number of matching
peaks and decrease their sensitivity to small measurement errors. No binning was performed
during the analysis of the Wasserstein metric.

The first test was based on 615 MS1 ESI-QTOF spectra with positive ionization mode.
The goal of comparing MS1 spectra was to verify the correlation between Wasserstein
distance and the difference in mass of the molecules. The spectra have been compared
pairwise, resulting in 188805 pairs. These pairs were then used to compute the Spearman’s
rank correlation between the distance and the absolute difference between masses of the
corresponding molecules. The results are summarized in Table 1.
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Table 1 Spearman’s rank correlations between the Wasserstein distance, Jaccard score, Euclidean
distance, and either the absolute mass difference or Tanimoto similarity of chemical structures.
M, absolute mass difference; W, Wasserstein distance; J, Jaccard score; E, Euclidean distance; T,
Tanimoto similarity; RW, relative Wasserstein distance; RE, relative Euclidean distance (see text).

MS1 spectra
M W J E

M 1.00 0.89 -0.07 -0.37
W – 1.00 -0.08 -0.22

J – – 1.00 -0.17
E – – – 1.00

MS2 spectra
T RW J RE

T 1.00 -0.41 0.22 -0.24
RW – 1.00 -0.21 0.43

J – – 1.00 -0.11
RE – – – 1.00

As expected, the metics based on peak matching are sensitive to mass differences, and
therefore less correlated than the Wasserstein distance. Note that for the Wasserstein and
Euclidean distance the correlation is expected to be positive, while for the Jaccard similarity
metric it is expected to be negative. Surprisingly, we have found a negative correlation
between the mass difference and the Euclidean distance.

The second test was based on MS2 ESI-QTOF spectra with positive ionization mode.
Here, the goal was to investigate the relationship between Wasserstein distance and structural
similarity. Note that this distance is sensitive to the fragmentation intensity – two MS2
spectra obtained for a given molecule can have a large distance if there is a significant
difference in the intensity of fragments. To account for that, we have selected a subset
of 473 MS2 spectra for different molecules in which the precursor peak had around 10%
relative intensity. This resulted in 111628 pairs of spectra. For each pair of spectra, we
have computed the Wasserstein, Jaccard and Euclidean metrics. Next, we have computed
the Tanimoto similarity between the structures of the corresponding molecules, based on
the Morgan circular fingerprints [17, 19]. The fingerprints have been computed using the
RDKit package (http://www.rdkit.org), with the radius of 2 and the default set of the
feature-based invariants. The results are summarized in Table 1.

Note that the selected set of spectra comes from a diverse set of molecules. In particular,
the mean mass is 310 Da, while the standard deviation is 160 Da. This poses a problem for
the Wasserstein metric, as a pairs of small molecules will yield small distances regardless of
the structural similarity. To account for this, we have divided the distance by the product
of masses of the analyzed molecules. Without this correction, the correlation between the
Wasserstein metric and the Tanimoto similarity drops to −0.22. This procedure also improved
the correlation between the Tanimoto similarity and the Euclidean distance, but not the
Jaccard score. We refer to the distances with this correction as relative distances.

The detailed relationship between the relative Wasserstein distance and the Tanimoto
similarity is depicted in Fig. 3. For comparison, the Figure also shows the relationship
between the Tanimoto similarity and the Jaccard score. Note that all compounds with
high Tanimoto similarity have small relative Wasserstein distances. However, this relative
distance is much more variable for compounds with low similarity. This frequent occurence
of molecules with highly divergent structures but similar MS2 spectra decreases the extent
to which the Wasserstein distance correlates with the Tanimoto structural similarity.

The experiments show that the approaches to spectral comparison based on Wasserstein
distance outperform the Jaccard score and the Euclidean distance in terms of correlation to
mass in MS1 spectra and to the chemical structure in MS2 spectra. However, at this moment
the Wasserstein distance should be applied only to MS2 spectra with similar proportions of

WABI 2018
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Figure 3 The relationship between MS2 spectra and the structural similarity according to the
relative Wasserstein distance (left) and the Jaccard score (right).

precursor molecules, and preferably obtained from compounds of similar mass. The results
so far are optimistic, but more work needs to be done in order to generalize the Wasserstein
distance so that it can be applied to a broader class of mass spectra.

3 Mass Spectral Deconvolution

In the mass spectral literature, the term deconvolution is used to refer to several problems
which usually deal with separating overlapping peaks and/or isotopic envelopes. The authors
of [4] define deconvolution as inferring the relative quantities of molecules with overlapping
isotopic envelopes. Similar problems have been described in [7, 6, 15]. The term deconvolution
is sometimes used as a synonym for deisotoping, that is, conversion of isotopic envelopes into
single peaks with average m/z value and joint intensity [8, 13]. Other authors have used this
term for conversion of m/z values to masses of multiply charged molecules [14, 18, 2].

We propose the following formalization of the mass spectral deconvolution, which encom-
passes several problems described above.

I Problem 2 (Mass Spectral Deconvolution, MSD). Let ν be a normalized mass spectrum,
and let {µi : 1 ≤ i ≤ k} be a collection of normalized mass spectra. Let d(ν, µ) be a distance
measure between spectra. Let ∆k−1 be a k − 1-dimentional probability simplex. Find a set of
weights p∗ ∈ ∆k−1 which minimizes the distance between ν and the convex combination of
{µi : i = 1, 2, . . . , k}:

p∗ = argmin
p∈∆k−1

d

(
k∑
i=1

piµi, ν

)
(1)

In the above definition, ν is referred to as an experimental spectrum, and µi are referred to as
theoretical spectra. Note that neither the distance measure nor the origin of the theoretical
spectra is not specified. Depending on the latter, this definition can be reduced to several
of the problems mentioned at the beginning of this section. For example, if the theoretical
spectra correspond to isotopic envelopes, the solution to MSD can be used for deisotoping,
in which case pi corresponds to the joint intensity of i-th envelope. On the other hand, if µi
correspond to mass spectra of a single molecule with different charges, the problem reduces
to conversion of m/z to mass. Finally, if µi are mass spectra from a database, the problem
can be reduced to annotation of mass spectrum.

In this section, we propose a solution to the deconvolution problem using the Wasserstein
metric as the distance measure, i.e. in (1) we use d = W1. For the sake of clarity, we assume
that the goal of MSD is to infer the proportions of compounds with overlapping isotopic
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envelopes. Therefore, we assume that the user knows the molecular formulas of compounds
which may be found in the analyzed spectrum. The theoretical spectra µi will correspond to
mass spectra of those compounds predicted by the IsoSpec [26] algorithm. Note however
that the proposed method is general, and can be easily extended to other use cases like
deisotoping by simply choosing a different set of the theoretical spectra.

3.1 Efficient algorithm for the MSD problem
In what follows we will present an efficient method of solving MSD problem. First, we
demonstrate the reduction of the original problem to a linear programming problem. Next,
we will show how to use the structure of resulting linear programming problem to efficiently
compute one iteration of a standard primal-dual Interior Point Method (IPM) (see for
example [9]). In this subsection we present the main ideas behind the solution and state the
most important results. The technical details and proofs are relegated to the Appendix.

Let ν =
∑m0
j=1 w0,jδx0,j be the experimental spectrum and for i = 1, 2, . . . , k let µi =∑mi

j=1 wi,jδxi,j
be the i-th theoretical spectrum. Denote the set of all support points from

the empirical and theoretical spectra by S = {xi,j : 1 ≤ j ≤ mi, 0 ≤ i ≤ k} and let n = |S|.
Let s = s1 < s2 < · · · < sn be the vector of ordered elements of S. Notice that the

cumulative distribution functions of µi’s and ν are constant on intervals [sj , sj+1). For
1 ≤ j ≤ n− 1 let fi,j and gj be the values of the cdfs of µi and ν respectively on the interval
[sj , sj+1), and set fi,n = 1 = gn. Let dj = sj+1 − sj be the length of the j-th interval.

Denote by F the k× n matrix with entries F [i, j] = fi,j for any 1 ≤ i ≤ k and 1 ≤ j ≤ n,
Ik an identity matrix of size k, and Jn an (n− 1)× n matrix equal to the identity matrix of
size n without the last row. We define

A =
[
−Jn −Jn 0
F −F −Ik

]
.

Finally, let c be a vector of length 2n+ k, such that c = (g,−g, 0k), where 0k is the vector of
zeros of length k, and b = (−d, 0k) be a vector of length n− 1 + k. The following Lemma,
proved in the Appendix, states that MSD can be reduced to linear programming.

I Lemma 3. The following dual linear programming problems:

min
x

xT c

s.t. Ax = b

x ≥ 0

max
y

yT b

s.t. AT y + z = c

z ≥ 0

(2)

are feasible. Furthermore, for any solution (x∗, y∗, z∗) of the above problem, the vector of the
last k elements of y∗ belongs to the set of solutions of MSD.

We propose to solve the above linear program using IPM, while using the structure of our
linear programming problem to significantly decrease the time and memory cost of each
iteration. In general, IPM for linear programming solves both primal and dual problems
simultaneously, by solving a cleverly chosen nonlinear approximation of those problems using
the Newton’s Method. For an overview of IPM we refer our reader to [9] and references
therein. In Algorithm 2 we present the pseudocode for the general scheme of IPM for the
dual problem (2). In what follows, xt, yt, zt are t-th iterates of variables x, y, z from the
problem, while Xt = diag(xt), Zt = diag(zt) are diagonal matrices.

A triple (xt, yt, zt) is called an ε-feasible ε-solution if it is both primal-dual feasible and
optimal up to ε tolerance. Since the computational cost of each iteration is dominated by
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Algorithm 2: General scheme of a primal-dual Interior Point Method.
Data: Matrix A and vectors b, c defining dual linear problems. A starting point

(x0, y0, z0) and error tolerance ε > 0.
Result: an ε-feasible ε-solution of the linear problem

1 Set t = 0 repeat
2 compute centrality µt = 〈xt, zt〉/(2n+ k) compute primal residual rtp = b−Axt

and dual residual rtd = c−AT yt − zt choose scaling factor σt (see Appendix)
find direction (dx, dy, dz) by solving the system of linear equations:A 0 0

0 AT I

Zt 0 Xt

dxdy
dz

 =

 rtp
rtd

σtµt1−Xtzt

 (3)

find αp ∈ (0, 1] such that xt+1 = xt + αpdx > 0 find αd ∈ (0, 1] such that
zt+1 = zt + αddz > 0 and take yt+1 = yt + αddy t = t+ 1

3 until triple (xt, yt, zt) is an ε-feasible ε-solution;

solving the equation (3), we focus on this part and relegate to the Appendix the discussion
about choosing the stopping condition, the starting point (x0, y0, z0) and the scaling factors σt.

The solution of the equation (3) can be obtained by solving the normal equation

AZ−1
t XtA

T dy = b+AZ−1
t (Xtr

t
d − σtµt1).

After solving the normal equation dx, dz can be obtained using formulas:

dz = z = rtd −AT dy, dx = −xt + Z−1
t (σtµt1−Xtdz).

The computational cost of single step of IPM is dominated by solving the normal equation,
which is of order O((k(n− 1)3). However, thanks to the specific structure of matrix A, for
any v, w we can compute Av, AT v and solve an equation AZ−1

t XtA
T v = w efficiently. The

detailed derivation of efficient algorithm, tailored to deconvolution problem is given in the
Appendix. This allows us to perform one step of IPM efficiently, i.e the cost of single step is
of order O(k3 + k

∑k
i=1mi + n).

I Lemma 4. One step of IPM for problem defined in Lemma 3 can be computed in time
O(k3 + k

∑k
i=1mi + n) and memory O(k2 + n).

Note that the for the given error tolerance ε, the IPM needs O(
√

2n+ k log(ε−1)) iterations
to find an ε-accurate solution.

3.2 Computational experiments
We have performed several computational experiments to illustrate the performance of the
proposed solution to MSD, and to analyze its robustness to various kinds of distorsions
occuring in MS measurements. In contrast to the previous case studies, in this section we
use in silico generated spectra. This allows us to precisely control the signal-to-noise ratio,
and to rigorously estimate the error of the method.

Our main goal is to demonstrate the applicability of the Wasserstein distance to MSD in
case of noisy experimental spectra. There are several sources of noise in mass spectrometric
measurements, among others: (i) precision of the intensity measurement, (ii) precision of the
m/z measurement, (iii) resolving power, i.e. the ability to detect peaks with similar masses,
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Figure 4 An illustration of the simulated measurement inaccuracies based on a theoretical
spectrum of bradykinin (C50H73N15O11). Left: clean spectrum. Middle: noise in the intensity
domain. Right: noise in the mass domain. The apparent change in intensity in the right spectrum is
caused only by blurring the peaks and binning afterwards.

(iv) chemical noise, i.e. presence of unexpected molecules in a spectrum [3]. In this section, we
focus mostly on the first three types of noises, i.e. low resolving power and/or precision. The
first step of all our experiments was to generate the isotopic envelopes of selected molecules
by the IsoSpec algorithm [26]. These envelopes form the set of the theoretical spectra. The
experimental spectrum was obtained by taking a convex combination of the latter. Finally,
the experimental spectrum was distorted in the following manner:

Gaussian noise has been added to the logarithm of the peak intensity, and the result has
been exponentiated,
Each peak has been replaced by the density function of the normal distribution,
The resulting intensity distribution has been binned.

Both Gaussian noises had a standard deviation of 0.01. For binning of the mass spectrum, we
have assumed two resolving powers of the spectrometer: 0.001 Da and 0.01 Da. An example
of the result of this procedure is depicted in Fig. 4. A spectrum without these distortions is
referred to as clean, while the distorted one as noisy.

The performance of our approach to MSD has been quantified by the Root Mean Square
Error (RMSE) between the original and inferred proportions of different isotopic envelopes.
Note that the absolute prediction error for any variable does not exceed RMSE; moreover, if
RMSE for deconvolution of n variables is equal ε, then it cannot happen that the absolute
error exceeds ε/

√
n on every variable at the same time.

We have performed three tests, inspecting the method’s sensitivity to the number of over-
lapping envelopes, molecular mass of deconvolved molecules, and their charge. The first test is
based on random molecules. The next two are based on simulated proteins composed of aver-
agine – a model aminoacid with molecular formula C4 · 9384H7 · 7583N1 · 3577O1 · 4773 S0 ·
0417 and average molecular mass of 111.1254 Da [22]. In the first test, we have inspected
both clean and noisy spectra. In test two and three, only noisy spectra were analyzed. To
check the standard deviation of the prediction error, the tests were replicated, with noise
added independently in each replicate. Below we present each test in detail.

Test no. 1 – increasing number of molecules. This test is based on 17 randomly chosen
isobars consisting of carbon, oxygen, hydrogen, nitrogen and sulfur, each one with the
nominal mass of 30 000 Da. The experimental spectra with a range of interfering isobars
were constructed by gradually extending a subset of those molecules. This procedure was
replicated 20 times, resulting in 340 experimental spectra. The results are shown on Fig. 5.
The prediction error is very low and stable for less than 5 isobars, suggesting that the ratios
of particular elements in the deconvolved molecules have no considerable influence on the
method’s performance.
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Figure 5 The performance of MSD method for increasing number of deconvolved molecules. The
solid line represents the average RMSE over 20 repetitions. The ribbon represents the standard
deviation of the error.

Figure 6 The performance of MSD method for increasing mass of deconvolved molecules. The
solid line represents the average RMSE over 50 repetitions. The ribbon represents the standard
deviation of the error.

Test no. 2 – increasing mass of molecules. In this test, we consider overlapping isotopic
evelopes of two types of proteins: singly charged protein consisting of n units of averagine,
and doubly charged protein consisting of 2n units, where the values of n were selected so that
the average m/z ratio of proteins spans the range from 1,500 Da to 45,000 Da. For any given
n, the isotopic envelopes of the two corresponding proteins were mixed in proportions 0.8
and 0.2 respectively. The procedure was replicated 50 times. The outcome of this experiment
is presented in Fig. 6.

Test no. 3 – increasing charge of molecules. In this test, we consider the following four pro-
teins based on averagine: C1482H2328N408O444S12, C1482H2329N408O444S12, C1482H2330N408
O444S12 and C1481H2341N408O444S12, mixed in proportions 0.3, 0.5, 0.1 and 0.1, respectively.
The first three molecules differ by one hydrogen atom, resulting in partially overlapping
isotopic envelopes. The fourth molecule is an isobar of the second one, as one carbon has
been replaced by 12 hydrogens. All molecules have been equally charged, with the charge
varying from 1 to 10. This yields a sequence of deconvolution problems with increasing
difficulty, because the peaks become more densely packed while the resolution stays constant.
For each charge, 50 replicates were performed. The results are presented in Fig. 7.

Computational experiments show that our approach is able to deconvolve complex spectra
even in the presence of measurement inaccuracies. Even for 17 isobars the RMSE does not
exceed 0.05, which implies that the prediction error does not exceed 0.0125 on all 17 variables
simultaneously. However, it must be noted that our approach to MSD is expected to be
sensitive to chemical noise, because the Wasserstein metric requires that all the intensity of
the experimental spectrum is explained. Therefore, our solution to MSD should be applied
to mass spectra of highly purified compounds.
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Figure 7 The performance of MSD method for increasing charge of deconvolved molecules. The
solid line represents the average RMSE over 50 repetitions. The ribbon represents the standard
deviation of the error.

4 Discussion and conclusions

In this work, we have presented a new method of comparing mass spectra. The method is
based on the first Wasserstein metric, which is a well-established and well-studied metric in
both probability theory and image processing field. Compared to the current approaches for
spectral comparison, it is more robust to differences in chemical composition and measurement
errors. In the MS2 spectra of similar compounds, the Wasserstein distance reflects differences
in both chemical structure and fragmentation intensities.

We have proposed a new formalization of the Mass Spectral Deconvolution (MSD) problem,
which encompasses separating of overlapping isotopic envelopes, deisotoping, and decharging.
We have shown that the Wasserstein distance can be used to effectively solve this problem in
the presence of measurement inaccuracies.

The proposed solution for MSD works for a wide range of m/z values and multiply
charged ions. Furthermore, it is not limited to a single class of compounds like peptides or
metabolites. The theoretical isotopic envelopes can be either predicted in silico or measured
experimentally.

The implementation of the Wasserstein metric for mass spectral comparison and deconvo-
lution is available at https://github.com/mciach/wassersteinms.
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A Appendix

A.1 Derivation of linear program

In this subsection we show how the MSD problem defined in (1) can be reduced to linear
programming in the case when the distance measure is the Wasserstein metric W1. We also
prove Lemma 3.

Recall that our problem is to find:

p∗ = argmin
p∈∆k−1

W1

(
k∑
i=1

piµi, ν

)
(4)

where µi, ν are discrete probability measures with finite support.

First, we show that the MSD problem can be restated as weighted L1 regression on the
probability simplex ∆k−1. Using Lemma 1 we can write:

argmin
p∈∆k−1

W1

(
k∑
i=1

piµi, ν

)
= argmin

p∈∆k−1

∫
R

∣∣∣∣∣
k∑
i=1

piFµi
(x)− Fν(x)

∣∣∣∣∣ dx. (5)

Recall that S denotes the set of points from theoretical and empirical spectra, and that
(si)ni=1 are elements of S ordered increasingly. Note that for x < s1 and x ≥ sn, the function
under the integral on the RHS of (5) is zero. At the same time, the function is constant on
intervals [si, si+1). Let 1 ≤ j ≤ n− 1 let fi,j and gj be the values of the cdf on the interval
[sj , sj+1) of µi and ν respectively, and set fi,n = 1 = gn. For 1 ≤ j ≤ n−1 let dj = sj+1− sj
be the length of the interval. We write:

∫
R

∣∣∣∣∣
k∑
i=1

piFµi(x)− Fν(x)

∣∣∣∣∣ dx =
n−1∑
j=1

dj

∣∣∣∣∣
k∑
i=1

pifi,j − gj

∣∣∣∣∣ ,
and we reduce the optimization problem (4) to weighted L1 regression on probability simplex:

p∗ = argmin
p∈∆k−1

n−1∑
j=1

dj

∣∣∣∣∣
k∑
i=1

pifi,j − gj

∣∣∣∣∣ (6)

Now, we apply a well known technique of representing weighted L1 regression as linear
programming problem (see e.g. [23]). Let us introduce dummy variables tj , such that
tj ≥ |

∑m
i=1 pifi,j − gj |. With this notation the problem (6) is equivalent to minimizing linear

function
∑n−1
i=1 djtj . For any j the inequality tj ≥ |

∑m
i=1 pifi,j − gj | can be represented by

two linear inequalities, tj ≥
∑m
i=1 pifi,j − gj and tj ≥ −

∑m
i=1 pifi,j + gj . To also take into

account the fact that vector (pi)ki=1 needs to belong to the probability simplex, we just need
to add inequality constraints pi ≥ 0 and equality constraint

∑k
i=1 pi = 1. By rewriting the
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latter as two inequality constraints, we end up with the following linear program:

min
p,t

dT t

s.t. − tj +
m∑
i=1

pifi,j ≤ gj

− tj −
m∑
i=1

pifi,j ≤ −gj

1 ≤
m∑
i=1

pi ≤ 1

pi ≥ 0.

(7)

The minimized function in (7) does not depend itself on p, however variable p appears in
constrains. From the construction of (7) it follows that for any feasible pair (p, t) we have:

dT t ≥
n−1∑
i=1

dj

∣∣∣∣∣
k∑
i=1

pifi,j − gj

∣∣∣∣∣
with equality holds if and only if tj = |

∑k
i=1 pifi,j − gj |. Therefore for any solution p∗ of

problem (6) there exists t∗ such that (p∗, t∗) is a solution of (7). It also follows that for any
solution (p∗, t∗) of (7), vector p∗ is a solution of (6). Furthermore, since (6) is a problem of
optimizing continuous convex function on a compact set, at least one solution exists.

We have thus reduced MSD problem (4) to a Linear Programming problem. Denote
by F the k × n matrix with entries F [i, j] = fi,j for any 1 ≤ i ≤ k and 1 ≤ j ≤ n, Ik an
identity matrix of size k, and Jn an (n− 1)× n matrix equal to the identity matrix of size n
without the last row. Ussing definitions of vectors g and d, we can rewrite the problem (7)
in a simplified form:

max
t

−dT t

s.t.

−JTn FT

−JTn −FT
0 −Ik

(t
p

)
≤

 g

−g
0k,


where 0k is a zero vector of length k. We bring to our reader’s attention that the constrain∑k

i=1 pi = 1, splits into two inequality constraints
∑k
i=1 pi ≤ 1 and −

∑k
i=1 pi ≤ −1, which

was included in the above program, since the last row of matrix FT contains ones.
Let us recall definitions of c = (g,−g, 0k), b = (−d, 0k) and

A =
[
−Jn −Jn 0
F −F −Ik

]
.

Using the above notation, and adding the slack variables z to replace inequality constrains
by equality constrains, we rewrite the problem (7) as

max
y

yT b

s.t. AT y + z = c

z ≥ 0.

(8)

This summarizes the reduction of the original minimization problem to linear programming.
We end this section with the proof of Lemma 3.
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Proof of Lemma 3. From the above discussion it follows that the feasible region of the
problem (8) is nonempty. Furthermore, note that the problem given by (6) is bounded from
below. This, combined with the inequality:

yT b ≤ −
n−1∑
j=1

dj

∣∣∣∣∣
k∑
i=1

pifi,j − gj

∣∣∣∣∣ ,
means that the maximization problem from Lemma 3 has a solution. From the duality
theory for linear programs it follows that the minimization problem is feasible as well and
the duality gap is zero.

Finally, from the above discussion it follows as well that if (x∗, y∗, z∗) is a solution of
dual problems in Lemma 3, then the last k elements of y∗ form a vector in ∆k−1 that is a
solution of the initial MSD problem. J

A.2 Interior Point Method
We remind our reader that our goal is to solve dual linear problems from Lemma 3. In the
Section 3.1 we presented a general scheme for a primal-dual Interior Point Method for the
case when primal problem has only equality constraints, as is the case for the problem of
interest to us. In this section we discuss the details of the Algorithm 2, and prove our main
claim presented in Lemma 4 by presenting an efficient way of computing one iteration of an
IPM.

We first address the issues of initial conditions (x0, y0, z0), stopping criterion and choosing
the scaling factor σt. The IPM does not require the starting point or the iterates to be in
feasible region. The only requirement is that all elements of vectors xt, zt are positive for t ≥ 0.
Hence we can choose almost arbitrary starting point, although in practice it is beneficial to
choose x, z such that they are not to close to zero. We propose the following choice of x0: for
1 ≤ i ≤ n− 1 we take (x0)i = (x0)n+i = di/2, and (x0)n = 2/3, (x0)2n = 1/3. We also let
(x0)2n+i = 1/3 for 1 ≤ i ≤ k. It is straightforward to check, that such x0 satisfies Ax0 = b,
and x0 > 0. Finding a point (y0, z0) that is dual feasible and z0 ≥ 1 is straightforward using
the connection of the dual problem to L1 regression described in (6). We choose a uniform
vector p ∈ ∆k−1 and tj equal to |

∑k
i=1 pifi,j − gj |+ 1 for all j ≤ n− 1. Taking y0 = (t, p)

and z0 = c−AT y0 we get a dual feasible point with z0 ≥ 1. For now we just note that this
construction can be easily computed using subroutines for computing FT v and AT v for given
vectors v of appropriate size, and vector operations on vectors of size O(n+ k). The efficient
multiplication by FT and AT is described later.

The stopping criterion of the main loop of the IPM is triple (xt, yt, zt) begin and ε-feasible
ε-solution. The residuals rtp, rtd measure how far the triple (xt, yt, zt) is from feasibility, while
the duality gap 〈xt, zt〉 measures how far the point is from optimality. We say a point is an
ε-solution it the duality gap is smaller than a given ε. For a point to be ε-feasible, the norms
of the residuals have to be smaller than ε, that is ‖rtp‖2 < ε and ‖rtd‖2 < ε. In practice usually
different εo, εp, εd are chosen based on the problem, and the stopping criterion is 〈xt, zt〉 ≤ εo,
‖rtp‖2 < εp and ‖rtd‖2 < εd. We also note, that to prevent infinite loops practical algorithms
stop after reaching a set maximal amount of iterations. From the perspective of our analysis,
the most important fact is that checking the stopping criterion is of order O(n+ k).

Choosing the scaling factor can be done in a variety of ways. The simplest method is
to choose σk = γ ∈ (0, 1). More sophisticated approaches like predictor-corrector method
first find the Newton direction (d̂x, d̂y, d̂z) for the most optimistic σ̂t = 0. Then the actual
scaling factor σt is chosen based on how much reduction in duality gap could be achieved
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while going in the direction (d̂x, d̂y, d̂z). Again, for more details on methods of choosing the
scaling factor we refer to [9] and references therein. We just note that there exist methods
for choosing the scaling factor that are both practical and lead to theoretical guarantees on
the number of iterations necessary for an IPM to converge. Furthermore for the state of
the art methods the cost of computing the scaling factor is the same as the cost of solving
the system of linear equations for (dx, dy, dz), and is actually done by solving a system of
equations with the same RHS. As will be clear from what follows, the cost of solving this
system of linear equations does not depend on the RHS.

The above discussion justifies our claim, that the cost of computing one step of an IPM
is dominated by the cost of finding the solution of the system:A 0 0

0 AT I

Zt 0 Xt

dxdy
dz

 =

 rtp
rtd

σtµt1−Xtzt,

 (9)

where rtp = b−Axt and rtd = c−AT yt − zt.
As we previously noted, a common technique for solving the system of equations (9) is to

reduce it to solving the normal equation Σdy = r, where:

Σ = AZ−1
k XkA

T

and

r = b+A(Zk)−1(Xkr
k
d − σkµk1).

This equation is arrived at, after applying a blockwise Gaussian elimination on the linear
system (9). Given a solution dy of the normal equation, we can compute dx, dz from equations
dz = rkd −AT dy and dx = −xk + (Zk)−1(σkµk1−Xkdz).

Therefore as we have noted in Section 3.1 one iteration of IPM can be computed efficiently,
if we can efficiently compute Av, AT v and solve Σv = w for v, w vectors of appropriate
length, and Σ = AHAT where H is a diagonal matrix with positive elements on the diagonal.
We devote the rest of this section to presenting and analyzing methods for those three
computational problems, that take advantage of the specific structure of matrix A.

We first observe that matrix F is related to a sparse matrix. For simplicity we denote
m =

∑k
i=1mi, where mi are the sizes of theoretical spectra.

I Lemma 5. Let U denote an upper-triangular n× n matrix, such that U [i, j] = 1 for i ≤ j
and U [i, j] = 0 for i > j. Then there exists a sparse m × n matrix W , with m nonzero
entries such that F = WU . Furthermore sparse representations of matrices W and WT can
be constructed in O((n+m) log(n+m)) time.

Proof. Let s1 ≤ . . . ≤ sn be the ordered point from set S. For any theoretical measure µi,
we can represent µi as

∑S
j=1 wi,jδsj

, whith only mi nonzero elemets wi,j for each i. Take
matrix W , such that W [i, j] = wi,j . Then the matrix W is sparse and has a total of

∑k
i=1mi

nonzero elements. It is straightforward to check that F = WU , since for any i, j we have
WU [i, j] =

∑
l≤j wi,l = fi,j . In other words, the cdf of distribution µi on interval [sj , sj+1)

is equal to the sum of probability masses in µi with x coordinate less or equal to sj+1.
To finish the proof, we need to show how to construct a sparse representation of W

and WT . In a sparse representation of a matrix, we represent each row of W as a list of
nonzero elements, i.e. (j, wi,j) for j such that wi,j > 0. The matrix W is represented as
list of rows. This is a classic representation of a sparse matrix that allows to compute
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Wv in time
∑k
i=1mi for any vector v ∈ Rn. Constructing the sparse representations of W

and WT is very easy, and needs to be done only once before the first iteration of the IPM.
As previously let ν =

∑m0
j=1 w0,jδx0,j

be the experimental spectrum and for i = 1, 2, . . . , k
let µi =

∑mi

j=1 wi,jδxi,j be the i-th theoretical spectrum. We construct a list of triples
(xi,j , i, wi,j) and sort it with respect to the first element. Then it is enough to pass once
through this sorted list. Each triple with i > 0 corresponds to one element of the matrix
W . Since we pass through the elements in increasing order of x, we can remember how
many different x we have seen so far. For the triple (x, i, w), if we have seen l different x
so far, then we know that we have W [i, l] = w, and we simply add (l, w) to i-th list in the
representation of W and (i, w) to l-th list in the representation of WT . The total cost of
this construction is O((n+m) log(n+m)), due to the sorting of elements, and the memory
needed for storing both representations is O(m). J

I Lemma 6. For any vector v ∈ RN and w ∈ Rn+m−1 the products Av and ATw can be
computed in O(n+ k +m) time and using additional O(n+ k) memory.

Proof. The only nontrivial part of both of those operations is computing Fv or FT v for some
vector v of appropriate length, which can be done efficiently thanks to the representation
F = WU given by Lemma 5. To compute w = Fv, we first compute u = Uv which can
be done in time O(n) by computing suffix sums of vector v, without the need to explicitly
store matrix U . We need O(n) memory to store the result of this operation. Next, we have
w = Wu. Thanks to the sparse representation, this multiplication can be done in O(m)
time and we need O(k) memory for storing the result. Similarly, to compute w = FT v, we
first multiply v by WT and then multiply the result by UT which corresponds to computing
prefix sums, and does not require explicit construction of U . As for multiplication by F we
need O(n+ k +m) time and O(n+ k) memory for those operations. J

We are left with the task of solving a system of linear equations Σv = w, where Σ = AHAT

for a diagonal matrix H with positive elements on the diagonal. To prove that this can be
done efficiently, we first prove.

I Lemma 7. For any diagonal matrix G of size n× n the matrix FGFT can be computed
in O(m(k +m) + n) time and using O(m2) memory.

Proof. It is straightforward to check, that for i, j ≤ n we have UDUT [i, j] =
∑n
l=maxi,j

G[l, l].
We have, also, FGFT = W (UDUT )WT . Therefore if we compute the suffix sums of the
diagonal of G in time and space O(n), we can compute UDUT [i, j] in constant time for any
i, j when we need it. We denote αi,j = UDUT [i, j]. Now let us choose i, j ≤ n. We have:

FGFT [i, j] =
∑
p≤n

∑
q≤n

wi,pαp,qwj,q

Given the sparse representations of rows Wi,Wj the above sum could be computed in time
O(mimj), but there is a faster way. Notice that for q ≥ p we have αp,q = αq,q, and write:∑

1≤p≤q≤n
wi,pαp,qwj,q =

∑
1≤p≤q≤n

wi,pαq,qwj,q (10)

The above sum can be computed in O(mi + mj). Let Li, Lj be the lists containing the
sparse representations of Wi,Wj . We first compute the suffix sums of αq, qwq,j for (q, ·) ∈ Lj ,
which can be done in O(mj) since list Lj is ordered by column number q. Then for any
(p, wi,p) ∈ Li we add to the result the suffix sum of αq, qwq,j for the smallest q ≥ p such
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that (q, ·) ∈ Lj . Since lists Li, Lj are ordered by column numbers p, q, this can be done in
O(mi +mj) time in standard way. Therefore (10) can be computed in O(mi +mj).

Similarly, the sum:∑
1≤q<p≤n

wi,pαp,qwj,q =
∑

1≤q<p≤n
wi,pαp,pwj,q

can be computed in O(mi +mj). Therefore after we compute suffix sums of the diagonal of
G in time and memory O(n), the cell (i, j) of matrix FGFT can be computed in O(mi +mj)
time. We have∑

1≤i,j≤n
mi +mj = (2k − 1)m

and therefore the whole matrix FGFT can be computed in O(km+ n) time and O(k2 + n)
memory. J

We can now prove that the normal equation can be solved efficiently, no matter the right
hand side.

I Lemma 8. Let r ∈ Rn+k−1 be a vector and let H be a (2n+ k)× (2n+ k) diagonal matrix,
with positive elements on the diagonal. Then the matrix AHAT has full rank, and equation
AHAT v = r can be found in O(k3 + km+ n) time and O(k2 + n) space.

Proof. First we present a usefull decomposition of matrix AHAT . Suppose that H =
diag(H1, H2, H3) where H1, H2, H3 are diagonal matrices of sizes n, n, k respectively. Then
using the definition of A we can write:

AHAT =
[
Jn(H1 +H2)JTn Jn(H2 −H1)FT
F (H2 −H1)JTn F (H1 +H2)FT +H3

]
(11)

We will use block LDU decomposition for the right hand side of the above equation. For a

given matrix B =
[
B1,1 B1,2
B2,1 B2,2

]
with B1,1 invertible the block LDU decomposition of B is:

B =
[

I 0
B2,1B

−1
1,1 I

] [
B1,1 0

0 B2,2 −B2,1B
−1
1,1B1,2

] [
I B−1

1,1B1,2
0 I

]
We note, that Jn(H1 +H2)JTn is a diagonal (n− 1)× (n− 1) matrix with positive elements
on the diagonal, and is therefore invertible and easy to invert numerically. For brevity, we
denote K = Jn(H1 + H2)JTn and L = Jn(H2 −H1) and G = H1 + H2 − LTK−1L. Using
the block LDU decomposition for (11) we get:

AHAT =
[

In−1 0
FLTK−1 Ik

] [
K 0
0 FGFT +H3

] [
In−1 K−1LFT

0 Ik

]
=: LMR

From above representation it follows, that AHAT has full rank. Indeed, it is a product of
square matrices L,M,R, and it is obvious that L and R have full rank. Furthermore M also
has full rank. To see why, observe that G is a diagonal matrix with positive elements. This
follows from the fact that elementwise we have G ≥ H1 +H2 − (H2 −H1)2/(H1 +H2) (with
equality on all elements except the right bottom row). On the other hand H1 +H2 − (H2 −
H1)2/(H1 + H2) = 4H1H2/(H1 + H2) which is a diagonal matrix with positive elements.
Therefore FGFT is nonnegative definite, and since H3 is positive definite, we conclude that
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FGFT +H3 is positive definite. Since K is positive definite as well, M has full rank and so
does AHAT .

For given vector r we would like to solve the equation LMRv = r. An easy way to do
this, is first solve equation Lv1 = r, then solve equation Mv2 = v1 and lastly Rv3 = v2.
Then we have LMRv3 = LMv2 = Lv1 = r. We can therefore work with each matrix L,M,R

separately.
Solving Lv1 = r is trivial. Let us assume that r = (r1, r2), where r1 is of length n − 1

and r2 has length k. Then:

v1 =
(

r1
r2 − FLTK−1r1

)
which is easy to compute, since the cost of multiplying by LTK−1 is O(n), and we can
efficiently multiply vector by F thanks to Lemma 6. Solving the linear equation Rv3 = v2 is
equally easy, since we can efficiently multiply by FT as well.

The only thing left is solving Mv2 = v1. Assume v1 = (u1, u2) where u1 is of size n− 1
and u2 is of size k. Let P = FGFT +H3. Then P is a positive definite matrix of size k × k
that we can compute in O(km+ n) thanks to Lemma 7. Let v′ be a solution of Pv′ = u2,
that we find using standard methods in time O(k3) and space O(k2). Then v2 = (uT1 , v′T )T
is the solution of equation Mv2 = v1.

Summing up, the cost of finding a solution to the equation AHAT v = r is O(k3 +km+n),
where O(k3) is the cost of inverting a k × k matrix, O(km+ n) is the cost of creating this
matrix, and all other operations have cost linear in n, k,m. For computing the k × k matrix
we need O(k2) memory, but all other operations can be done using additional memory linear
in n, k. J

Proof of Lemma 4. For each iteration we need to solve a finite amount of normal equations
(maybe more than one, depending on our mechanism of choosing scaling factor) and ad-
ditionally perform a finite amount of multiplications Av, AT v , Fv, FT v. Since the other
operations can be done in time and memory linear in n, k,m, we conclude that one iteration
of a primal-dual Interior Point Method can be done in O(k3 + km+ n) time and O(k2 + n)
memory. J
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