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Abstract

From the beginnings of fuzzy logic, the Sheffer stroke operation has been overlooked and the efforts of the researchers have 
been devoted to other logical connectives. In this paper, the Sheffer stroke operation is introduced in fuzzy logic generalizing the 
classical operation when the truth values are restricted to {0, 1}2. Similar to what happens in Boolean logic, the fuzzy Sheffer 
stroke is functionally complete and it can be used to generate any other fuzzy logical connective by combinations of itself. Two 
construction methods are presented and the close connection of this operation with a pair of fuzzy conjunction and negation is 
analysed.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Sheffer stroke; Fuzzy conjunction; t-Norm; Fuzzy implication function

1. Introduction

In classical Boolean logic, the so-called Sheffer stroke [11,13] and Peirce arrow [8] (also known as NAND or NOR 
operations) highlight among other logical connectives due to the fact that they are functionally complete. Indeed, each 
one of these two operators can be considered by itself to constitute a logical formal system without the need to use any 
other logical connective. Therefore, all mathematically definable connectives in Boolean logic can be defined using 
either only Sheffer Stroke or only Peirce Arrow. No other unary or binary connective (or associated function) fulfils
this property.
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Despite the metalogical importance of these two operations in Boolean logic, in the context of fuzzy logic, most of 
the theoretical efforts have been devoted to the study of fuzzy conjunctions, fuzzy disjunctions or fuzzy implication 
functions. In fact, up to our knowledge, neither Sheffer stroke nor Peirce arrow has been studied in the fuzzy logic 
framework. This fact is curious and one possible explanation could be that in the beginnings of fuzzy logic [14] the 
focus was set on fuzzy conjunctions and disjunctions to model the intersection and union of fuzzy sets and specially, 
on t-norms [5,10] due to their applications.

From the above discussion, the main goal of this paper is the proposal of the so-called fuzzy Sheffer stroke operation 
as a fuzzy logical connective which generalizes the Boolean Sheffer stroke when the truth values are restricted to 
{0, 1}2. It will be proved that the defined operation is also functionally complete in the fuzzy logic framework being 
able to generate fuzzy conjunctions, disjunctions, negations and implication functions by itself. The generation of 
t-norms and t-conorms from this operation will be also studied. As a secondary goal of the paper, two construction 
methods of fuzzy Sheffer strokes are proposed. The first one relies on the use of a fuzzy conjunction and a fuzzy 
negation while the second one uses additive generators. From the first construction method, a connection between 
fuzzy Sheffer strokes and fuzzy conjunctions through a fuzzy negation is proved in an analogous way to the existing 
equivalence in Boolean logic.

The structure of the paper is as follows. After this introduction, those concepts and results related to fuzzy logical 
connectives which are necessary to understand the contents of the paper are recalled. Then in Section 3, the fuzzy 
Sheffer stroke operation is presented, some examples are given and the construction methods of the most important 
fuzzy logical connectives as combinations of fuzzy Sheffer stroke operations are introduced. In Section 4, two con-
struction methods of families of fuzzy Sheffer strokes are proposed and some additional properties are studied. A 
potential application of this operation in real life is shown in Section 5. The paper ends with some conclusions and 
future work.

To end this introduction we want to stress that although this paper constitutes the first extensive study on the Sheffer 
stroke operation in fuzzy logic, some preliminary results were published in conference papers [4] and [7].

2. Preliminaries

This section encompasses the definitions and some immediate facts about the most important fuzzy logical con-
nectives such as fuzzy negations, fuzzy conjunctions, fuzzy disjunctions and fuzzy implication functions to make the 
paper as self-contained as possible.

2.1. Fuzzy negations

Let us start recalling the definition of fuzzy negation and the additional properties they may have.

Definition 2.1 ([3]). A decreasing function N : [0, 1] → [0, 1] is called a fuzzy negation if N(0) = 1 and N(1) = 0. 
Moreover, a fuzzy negation N is called

(i) strict if it is strictly decreasing and continuous;
(ii) strong if it is an involution, i.e., N(N(x)) = x for all x ∈ [0, 1].

Some important fuzzy negations which will be used throughout this paper are the classical negation (or standard 
negation) given by NC(x) = 1 − x for all x ∈ [0, 1], the least and the greatest fuzzy negations which are given 
respectively by

ND1(x) =
{

1, if x = 0,

0, otherwise,
ND2(x) =

{
1, if x < 1,

0, if x = 1,

and the Yager class and the Sugeno class of fuzzy negations defined respectively as

NY
ω (x) = (1 − xω)1/ω, NS

λ (x) = 1 − x

1 + λx
,

for all x ∈ [0, 1], ω ∈ (0, +∞) and λ ∈ (−1, +∞) (see [1]).
2
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In order to recall the characterization theorem of strong fuzzy negations, we need previously the concept of ϕ-
conjugation.

Definition 2.2 ([1]). Let ϕ : [0, 1] → [0, 1] be an increasing bijection. We say that two functions f, g : [0, 1]n → [0, 1]
are ϕ-conjugated if g = fϕ , where

fϕ(x1, . . . , xn) = ϕ−1(f (ϕ(x1), . . . , ϕ(xn))),

for all x1, . . . , xn ∈ [0, 1].

The next result provides the characterization theorem of strong fuzzy negations.

Theorem 2.3 ([12]). Let N : [0, 1] → [0, 1] be a function. The following statements are equivalent:

(i) N is a strong fuzzy negation.
(ii) There exists an increasing bijection ϕ : [0, 1] → [0, 1] such that N and NC are ϕ-conjugated, that is,

N(x) = (NC)ϕ(x) = ϕ−1(1 − ϕ(x)),

for all x ∈ [0, 1].

2.2. Fuzzy conjunctions and fuzzy disjunctions

Next, we recall the well-known definitions of fuzzy conjunctions and fuzzy disjunctions.

Definition 2.4 ([2]). A function C : [0, 1]2 → [0, 1] is called a fuzzy conjunction if it satisfies, for all x, y, z ∈ [0, 1], 
the following conditions:

(C1) C(x, y) ≤ C(z, y) for all x ≤ z,
(C2) C(x, y) ≤ C(x, z) for all y ≤ z,
(C3) C(0, 1) = C(1, 0) = 0 and C(1, 1) = 1.

Definition 2.5 ([2]). A function D : [0, 1]2 → [0, 1] is called a fuzzy disjunction if it satisfies, for all x, y, z ∈ [0, 1], 
the following conditions:

(D1) D(x, y) ≤ D(z, y) for all x ≤ z,
(D2) D(x, y) ≤ D(x, z) for all y ≤ z,
(D3) D(0, 1) = D(1, 0) = 1 and D(0, 0) = 0.

The most studied fuzzy conjunctions and fuzzy disjunctions are the families of t-norms and t-conorms, respectively.

Definition 2.6 ([5]). An associative and commutative fuzzy conjunction T : [0, 1]2 → [0, 1] with neutral element 1 is 
called a t-norm.

Definition 2.7 ([5]). An associative and commutative fuzzy disjunction S : [0, 1]2 → [0, 1] with neutral element 0 is 
called a t-conorm.

In Table 1, the t-norms and t-conorms which will be considered in this paper are collected (see [5]).

2.3. Fuzzy implication functions

The final part of this section is devoted to fuzzy implication functions. Nowadays, the most accepted definition of 
fuzzy implication functions is the following one.
3
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Table 1
Some t-norms and t-conorms.

T-norm Formula T-conorm Formula
Łukasiewicz TL(x, y) = max{x + y − 1,0} Łukasiewicz SL(x, y) = min{x + y,1}
Minimum TM(x, y) = min{x, y} Maximum SM(x, y) = max{x, y}
Product TP(x, y) = xy Prob. Sum SP(x, y) = x + y − xy

Drastic TD(x, y) =
{

0, if (x, y) ∈ [0,1)2

min{x, y}, otherwise
Drastic SD(x, y) =

{
1, if (x, y) ∈ (0,1]2
max{x, y}, otherwise

Table 2
Truth table of the classical Sheffer 
stroke.

p q p ↑ q

0 0 1
0 1 1
1 0 1
1 1 0

Definition 2.8 (see [1,3]). A function I : [0, 1]2 → [0, 1] is called a fuzzy implication function if it satisfies, for all 
x, y, z ∈ [0, 1], the following conditions:

(I1) I (x, z) ≥ I (y, z) for all x ≤ y,
(I2) I (x, y) ≤ I (x, z) for all y ≤ z,
(I3) I (0, 0) = I (1, 1) = 1 and I (1, 0) = 0.

It follows from the definition that I (0, x) = 1 and I (x, 1) = 1 for all x ∈ [0, 1] whereas the symmetrical values 
I (x, 0) and I (1, x) are not derived from the axioms.

Many different fuzzy implication functions have been introduced in the literature (see [1]). In this paper, the Kleene-
Dienes implication defined by IKD(x, y) = max{1 − x, y} for all x, y ∈ [0, 1] will be considered.

3. Fuzzy Sheffer stroke

In classical logic, Sheffer stroke, also called NAND or alternative denial, is one of the two operations that can be 
used by itself, without any other logical operations, to constitute a logical formal system. In spite of its importance 
in classical logic, this operator has not been investigated in the fuzzy logic framework where all the efforts have 
been devoted to other operators which are not functionally complete. The main goal of this paper is to introduce the 
Sheffer stroke operation in the context of fuzzy logic. Therefore, in this section the fuzzy Sheffer stroke operation is 
introduced as an operation which coincides with the classical Sheffer stroke when the truth values are restricted to 
{0, 1}2. After that we also show how to construct all other main fuzzy logical connectives by using only combinations 
of the fuzzy Sheffer stroke operator.

3.1. Definition

In classical logic, Sheffer stroke operation is the operator which indicates whether at least one of its operands is 
false and it is logically equivalent to the negation of the conjunction. It is usually denoted by either ↑ or | and its 
logical truth table is presented in Table 2.

Whenever a classical operator is generalized to the fuzzy logic framework, the first requirement is that the fuzzy 
logical operator restricted to the set {0, 1}2 has to coincide with the corresponding classical operator. Therefore, any 
potential definition of the fuzzy Sheffer stroke must satisfy Table 2. Moreover, analogously to the classical operator, 
the fuzzy Sheffer stroke should provide a greater value as lesser is the truth value of any of its operands. This fact is 
equivalent to impose the antitonicity in each of the variables. Thus, all this discussion leads to the following definition 
of the fuzzy Sheffer stroke which contains axioms derived from the negation of the axioms of the fuzzy conjunction.
4
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Fig. 1. Plots of the fuzzy Sheffer strokes presented in Example 3.2.

Definition 3.1. A function H : [0, 1]2 → [0, 1] is called a fuzzy Sheffer stroke operation (or fuzzy Sheffer stroke for 
short) if it satisfies, for all x, y, z ∈ [0, 1], the following conditions:

(H1) H(x, z) ≥ H(y, z) for all x ≤ y,
(H2) H(x, y) ≥ H(x, z) for all y ≤ z,
(H3) H(0, 1) = H(1, 0) = 1 and H(1, 1) = 0.

Note that, using the monotonicities, from the definition it is derived that H(0, x) = 1 and H(x, 0) = 1 for all 
x ∈ [0, 1] whereas the symmetrical values H(x, 0) and H(1, x) are not derived from the definition. In particular, 
H(0, 0) = 1 and it is satisfied that the fuzzy Sheffer stroke operator when restricted to {0, 1}2 coincides with the 
classical Sheffer stroke.

Example 3.2. Let us show some examples of operators fulfilling the conditions in Definition 3.1. Two important fuzzy 
Sheffer strokes are given by

Hmax(x, y) =
{

0, if (x, y) = (1,1),

1, otherwise,
Hmin(x, y) =

{
0, if (x, y) ∈ (0,1]2,

1, otherwise,

which denote the maximum and the minimum fuzzy Sheffer strokes, respectively. On the other hand, H3(x, y) =
1 − xy for all x, y ∈ [0, 1] provides an example of a continuous fuzzy Sheffer stroke. The plots of these operators are 
shown in Fig. 1.

3.2. Construction of other fuzzy connectives from fuzzy Sheffer stroke

Once the fuzzy Sheffer stroke has been introduced, let us generate the main fuzzy logical connectives by using 
only combinations of this operator. Namely, in the rest of this section, we will prove that fuzzy negations, fuzzy 
conjunctions, fuzzy disjunctions and fuzzy implication functions can be obtained through adequate combinations of 
fuzzy Sheffer strokes. In order to generate these operators, we will apply some tautologies from classical logic.

3.2.1. Construction of fuzzy negations
From Definition 3.1 it can be straightforwardly seen that given a Sheffer stroke operation three fuzzy negations 

can be defined. These fuzzy negations are given by some sections of the Sheffer stroke as the following definition 
presents.

Definition 3.3. Let H be a Sheffer stroke operation.

(i) The function Nl defined by Nl (x) = H(x, 1) for all x ∈ [0, 1] is called the left natural negation of H .
H H

5
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(ii) The function Nr
H defined by Nr

H (x) = H(1, x) for all x ∈ [0, 1] is called the right natural negation of H .
(iii) The function Nd

H defined by Nd
H (x) = H(x, x) for all x ∈ [0, 1] is called the diagonal natural negation of H .

Next result proves that the three above defined operators are indeed fuzzy negations.

Proposition 3.4. Let H be a Sheffer stroke operation. Then Nl
H , Nr

H and Nd
H are fuzzy negations.

Proof. On the first hand, all of them are decreasing functions since H is decreasing in each variable. Moreover, the 
corner conditions are also satisfied since

Nl
H (0) = H(0,1) = 1, Nr

H (0) = H(1,0) = 1 Nd
H (0) = H(0,0) = 1,

Nl
H (1) = H(1,1) = 0, Nr

H (1) = H(1,1) = 0, Nd
H (1) = H(1,1) = 0. �

Note that the three natural negations provided by each fuzzy Sheffer stroke introduced in Example 3.2 coincide. 
Indeed, Nl

Hmax
= Nr

Hmax
= Nd

Hmax
= ND2 , Nl

Hmin
= Nr

Hmin
= Nd

Hmin
= ND1 and Nl

H3
= Nr

H3
= Nd

H3
= NC . This is not 

always the case. Consider the fuzzy Sheffer stroke given by

H4(x, y) =
{

1, if x + y ≤ 1,

1 − y, otherwise.

It can be checked that Nl
H4

= ND1 , Nr
H4

= NC and

Nd
H4

(x) =
{

1, if x ≤ 1
2 ,

1 − x, otherwise.

3.2.2. Construction of fuzzy conjunctions and fuzzy disjunctions
In classical logic, the following two tautologies:

p ∧ q ≡ ((p ↑ q) ↑ (p ↑ q)),

p ∨ q ≡ ((p ↑ p) ↑ (q ↑ q)),

provide the construction methods of conjunction and disjunction from classical Sheffer stroke. In the next results, we 
will prove that the corresponding formulas involving fuzzy logical connectives can be used analogously to generate 
fuzzy conjunctions and fuzzy disjunctions from fuzzy Sheffer strokes. First, let us generate fuzzy conjunctions from 
fuzzy Sheffer strokes.

Theorem 3.5. Let H be a fuzzy Sheffer stroke. Then, the function CH : [0, 1]2 → [0, 1] given by

CH (x, y) = H(H(x, y),H(x, y)), x, y ∈ [0,1], (1)

is a fuzzy conjunction.

Proof. First, we will prove that CH satisfies the monotonicities, i.e., (C1) and (C2). Let x, y, z ∈ [0, 1] be such that 
x ≤ z. By using the decreasingness of Nd

H and the one of H in the first variable, we get that

CH (x, y) = H(H(x, y),H(x, y)) = Nd(H(x, y)) ≤ Nd(H(z, y)) = H(H(z, y),H(z, y)) = CH (z, y).

Thus, CH satisfies (C1). It can be shown analogously that CH is increasing in the second variable and therefore, CH

also satisfies (C2). Finally, we show that CH satisfies the boundary conditions, and consequently (C3), as follows:

CH (0,1) = H(H(0,1),H(0,1)) = H(1,1) = 0,

CH (1,0) = H(H(1,0),H(1,0)) = H(1,1) = 0,

CH (1,1) = H(H(1,1),H(1,1)) = H(0,0) = 1. �

6
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Example 3.6. Let us compute the fuzzy conjunctions generated from the fuzzy Sheffer strokes given in Example 3.2
by using Theorem 3.5.

(i) The fuzzy conjunction generated from Hmax is given by

CHmax(x, y) = Hmax(Hmax(x, y),Hmax(x, y)) =
{

1, if (x, y) = (1,1),

0, otherwise.

Note that CHmax is in fact the least fuzzy conjunction.
(ii) The fuzzy conjunction generated from Hmin is given by

CHmin(x, y) = Hmin(Hmin(x, y),Hmin(x, y)) =
{

1, if (x, y) ∈ (0,1]2,

0, otherwise.

It is straightforward to check that CHmin is just the greatest fuzzy conjunction.
(iii) Finally, the fuzzy conjunction generated from H3 is given by

CH3(x, y) = H3(H3(x, y),H3(x, y)) = 2xy − x2y2,

for all x, y ∈ [0, 1].

Next, let us provide a construction method of fuzzy disjunctions from fuzzy Sheffer strokes.

Theorem 3.7. Let H be a fuzzy Sheffer stroke. Then, the following function

DH (x, y) = H(H(x, x),H(y, y)), x, y ∈ [0,1], (2)

is a fuzzy disjunction.

Proof. First, we will prove that D is increasing in each variable, i.e., (D1) and (D2). Let x, y, z ∈ [0, 1] be such that 
x ≤ z. Due to the decreasingness of Nd

H and the one of H in the first variable, we have that

DH (x, y) = H(H(x, x),H(y, y)) = H(Nd
H (x),H(y, y))

≤ H(Nd
H (z),H(y, y)) = H(H(z, z),H(y, y)) = DH (z, y)

and DH satisfies (D1). It can be shown analogously that DH is increasing in the second variable satisfying also (D2). 
Finally, we show that DH satisfies the boundary conditions, and therefore (D3), as follows:

DH (0,0) = H(H(0,0),H(0,0)) = H(1,1) = 0,

DH (0,1) = H(H(0,0),H(1,1)) = H(1,0) = 1,

DH (1,0) = H(H(1,1),H(0,0)) = H(0,1) = 1. �
Example 3.8. Let us compute the fuzzy disjunctions generated from the fuzzy Sheffer strokes given in Example 3.2
by using Theorem 3.7.

(i) The fuzzy disjunction generated from Hmax is given by

DHmax(x, y) = Dmax(Dmax(x, x),Hmax(y, y)) =
{

0, if (x, y) ∈ [0,1)2,

1, otherwise.

Note that DHmax is in fact the least fuzzy disjunction.
(ii) The fuzzy disjunction generated from Hmin is given by

DHmin(x, y) = Hmin(Hmin(x, x),Hmin(y, y)) =
{

0, if (x, y) = (0,0),

1, otherwise.

It is straightforward to check that DHmin is just the greatest fuzzy disjunction.
7
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(iii) Finally, the fuzzy disjunction generated from H3 is given by

DH3(x, y) = H3(H3(x, x),H3(y, y)) = x2 + y2 − x2y2,

for all x, y ∈ [0, 1].

Once we have already presented the generation methods of fuzzy conjunctions and fuzzy disjunctions from fuzzy 
Sheffer strokes, it is worthy to study when these methods provide in particular t-norms and t-conorms. In order to 
analyse this fact, we need to introduce several additional properties of fuzzy Sheffer strokes which will play an 
important role in the next results. These properties are the following ones:

(H4) H(H(x, x), H(x, x)) = x, for all x ∈ [0, 1],
(H5) H(1, x) = H(x, x), for all x ∈ [0, 1],
(H6) H(x, y) = H(y, x), for all x, y ∈ [0, 1],
(H7) H(H(H(x, y), H(x, y)), z) = H(x, H(H(y, z), H(y, z))), for all x, y, z ∈ [0, 1].

Note that property (H4) can be rewritten as Nd
H(Nd

H (x)) = x for all x ∈ [0, 1], i.e., Nd
H is a strong negation. Next, (H5) 

is equivalent to Nr
H = Nd

H . (H6) means that H is symmetric and (H7) will prove to be related with the associativity 
of the generated fuzzy conjunction.

In this paper, we will restrict the study to the subcase of obtaining t-norms and t-conorms from fuzzy Sheffer strokes 
satisfying (H4). In Remark 3.11, it is proved that this condition is not necessary but it remains an open problem to 
analyse under which additional conditions a t-norm or a t-conorm can be obtained.

Let us start with a first lemma which will be useful to prove the next results.

Lemma 3.9. Let H : [0, 1]2 → [0, 1] be a fuzzy Sheffer stroke that satisfies (H4). Then the following statements are 
equivalent:

(i) H satisfies (H5).
(ii) H(H(1, x), H(1, x)) = x, for all x ∈ [0, 1].

(iii) H(1, H(x, x)) = x, for all x ∈ [0, 1].

Proof. First assume that H satisfies (H4) and (H5) and let us prove (ii). Then, for all x ∈ [0, 1], we have that

H(H(1, x),H(1, x)) = H(H(x, x),H(x, x)) = x,

and (ii) follows.
Let us assume now that H satisfies (H4) and (ii) and let us prove that (iii) is fulfilled. We have that

Nd
H (H(1,Nd

H (x))) = H(H(1,Nd
H (x)),H(1,Nd

H (x))) = Nd
H (x),

but since Nd
H is strong due to (H4) (and consequently one-to-one), this is equivalent to H(1, Nd

H(x)) = x for all 
x ∈ [0, 1] and therefore, H(1, H(x, x)) = x for all x ∈ [0, 1] holds.

Finally, assume now (H4) and H(1, H(x, x)) = x for all x ∈ [0, 1] and let us prove that (i) is fulfilled, i.e., (H5). It 
holds that

H(1,Nd
H (x)) = H(1,H(x, x)) = x = H(H(x, x),H(x, x)) = H(Nd

H (x),Nd
H (x)),

and since Nd
H is strong due to (H4) (and consequently surjective), we obtain H(1, x) = H(x, x), for all x ∈ [0, 1]. �

Next theorem studies under which conditions a t-norm is obtained from fuzzy Sheffer strokes that satisfy (H4).

Theorem 3.10. Let H be a fuzzy Sheffer stroke that satisfies (H4). Then, the following function

TH (x, y) = H(H(x, y),H(x, y)), x, y ∈ [0,1], (3)

is a t-norm if and only if H satisfies additionally (H5), (H6) and (H7).
8
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Proof. First of all, we will prove that if H is a fuzzy Sheffer stroke satisfying (H4), (H5), (H6) and (H7), then TH is a 
t-norm. Indeed, Theorem 3.5 guarantees the increasingness of TH in each variable. Moreover, Lemma 3.9 proves that 
TH has neutral element 1 since H satisfies (H5). Next, it is clear that if property (H6) holds then TH is commutative. 
Finally, the associativity of TH follows from property (H7).

Reciprocally, if TH is a t-norm, let us prove that H satisfies (H5), (H6) and (H7). Since TH has neutral element 1, 
(H5) follows directly. From the commutativity of TH , we get

Nd
H (H(x, y)) = H(H(x, y),H(x, y)) = TH (x, y) = TH (y, x) = H(H(y, x),H(y, x)) = Nd

H (H(y, x)),

for every x, y ∈ [0, 1], which proves that H satisfies (H6) since (H4) ensures that Nd
H is strong and therefore, one-to-

one. Finally, let x, y, z ∈ [0, 1], then using the associativity of TH , we have that

Nd
H (H(H(H(x, y),H(x, y)), z)) = H(H(H(H(x, y),H(x, y)), z),H(H(H(x, y),H(x, y)), z))

= TH (TH (x, y), z) = TH (x,TH (y, z))

= H(H(x,H(H(y, z),H(y, z))),H(x,H(H(y, z),H(y, z))))

= Nd
H (H(x,H(H(y, z),H(y, z)))),

and property (H7) holds due to the fact that again Nd
H is one-to-one. �

Remark 3.11. Although the study has been limited to the particular case of fuzzy Sheffer strokes satisfying (H4), 
there exist fuzzy Sheffer strokes not satisfying this additional property which provide also t-norms through Eq. (3). 
This is the case of the following fuzzy Sheffer stroke

H(x,y) =

⎧⎪⎨
⎪⎩

1 − x, if y = 1,

1 − y, if x = 1,

1, otherwise.

It is clear that H does not satisfy (H4) since Nd
H = ND2 but TH is the well-known drastic t-norm TD.

Let us perform now a similar study but now for the construction of t-conorms.

Theorem 3.12. Let H be a fuzzy Sheffer stroke that satisfies (H4). Then, the following function

SH (x, y) = H(H(x, x),H(y, y)), x, y ∈ [0,1], (4)

is a t-conorm if and only if H satisfies additionally (H5), (H6) and (H7).

Proof. First of all, Theorem 3.7 guarantees the increasingness of SH in each variable. From Lemma 3.9 we obtain 
that SH has neutral element 0 if and only if H satisfies (H5). It is straightforward to see that property (H6) implies 
the commutativity of SH . Reciprocally, assume now that SH is commutative, then

H(H(x, x),H(y, y)) = SH (x, y) = SH (y, x) = H(H(y, y),H(x, x)),

for all x, y ∈ [0, 1]. This proves that H satisfies (H5) due to the exhaustivity of Nd
H . Let x, y, z ∈ [0, 1] and a =

H(x, x), b = H(y, y), c = H(z, z), then

SH (x,SH (y, z)) = H(H(x, x),H(S(y, z), S(y, z)))

= H(H(x, x),H(H(H(y, y),H(z, z)),H(H(y, y),H(z, z))))

= H(a,H(H(b, c),H(b, c))), SH (SH (x, y), z)

= H(H(H(x, x),H(y, y)),H(z, z))

= H(H(H(H(x, x),H(y, y)),H(H(x, x),H(y, y))),H(z, z))

= H(H(H(a, b),H(a, b)), c).

The above equations prove that SH is associative if and only if H satisfies (H7) by using again the exhaustivity 
of Nd . �
H

9
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Remark 3.13. Contrarily to the case of the construction of t-norms, it is still an open problem to determine whether 
property (H4) is necessary for a Sheffer stroke to generate a t-conorm by means of Eq. (4). Note that if we consider 
the same fuzzy Sheffer stroke H which provided a counterexample in Remark 3.11, in this case applying Eq. (4), we 
obtain the least fuzzy disjunction, which is not a t-conorm.

In the two previous theorems, it has been proved that those fuzzy Sheffer strokes satisfying properties (H4)-(H7) 
generate always t-norms and t-conorms through Eqs. (3) and (4), respectively. Due to their importance in these con-
struction methods, the next theorem provides a characterization of these fuzzy Sheffer strokes.

Theorem 3.14. Let H : [0, 1]2 → [0, 1] be a binary function. Then the following statements are equivalent:

(i) H satisfies all the properties (H1)-(H7), i.e., H is a fuzzy Sheffer stroke satisfying properties (H4)-(H7).
(ii) There exists an increasing bijection ϕ : [0, 1] → [0, 1] such that H is given by

H(x,y) = ϕ−1(1 − ϕ(min{x, y})), x, y ∈ [0,1].

Proof. We will prove first that (i) implies (ii). On the one hand, H satisfies properties (H1)-(H3) and consequently, it 
is a fuzzy Sheffer stroke. Now since (H4) is satisfied, then Nd

H is a strong fuzzy negation and by using Theorem 3.10, 
the function

TH (x, y) = H(H(x, y),H(x, y)),

for all x, y ∈ [0, 1] is also a t-norm due to the fulfilment of properties (H5)-(H7). At this point, let us prove that 
H(x, y) = Nd

H (TH (x, y)) for all x, y ∈ [0, 1]. Indeed,

Nd
H (TH (x, y)) = Nd

H (H(H(x, y),H(x, y))) = Nd
H (Nd

H (H(x, y))) = H(x,y)

and the equality holds. Now, we have that

Nd
H (x) = H(x,x) = Nd

H (TH (x, x)),

for all x ∈ [0, 1] and since Nd
H is injective, we obtain that x = TH (x, x) for all x ∈ [0, 1]. Thus, this leads to TH = TM, 

the only idempotent t-norm, and therefore, using also Theorem 2.3, there exists an increasing bijection ϕ : [0, 1] →
[0, 1] such that H is given by

H(x,y) = Nd
H (TH (x, y)) = ϕ−1(1 − ϕ(min{x, y})),

for all x, y ∈ [0, 1].
Reciprocally, let us prove that (ii) implies (i). First, it is clear that H is decreasing in each variable, i.e., it satisfies 

properties (H1) and (H2), and it satisfies also (H3) since H(0, 1) = ϕ−1(1) = 1, H(1, 0) = ϕ−1(1) = 1 and H(1, 1) =
ϕ−1(0) = 0. Next, since both the diagonal and the right natural negation of H are equal to (NC)ϕ which is a strong 
negation, property (H4) is satisfied. Note that TH = TM, i.e., TH is a t-norm. Indeed,

TH (x, y) = H(H(x, y),H(x, y)) = ϕ−1(1 − ϕ(min{H(x,y),H(x, y)}))
= ϕ−1(1 − ϕ(ϕ−1(1 − ϕ(min{x, y})))) = min{x, y},

for all x, y, z ∈ [0, 1]. From Theorem 3.10 the function H satisfies all the properties (H1)-(H7). �
Example 3.15. Some examples of fuzzy Sheffer strokes satisfying all the properties (H1)-(H7) are

H1(x, y) = max{1 − x,1 − y}, H2(x, y) =
√

max{1 − x2,1 − y2}
for all x, y ∈ [0, 1] which are obtained by choosing ϕ(x) = x and ϕ(x) = x2, respectively, in Theorem 3.14.
10
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3.2.3. Construction of fuzzy implication functions
In classical logic, there exist two tautologies to define the classical implication by using only the classical Sheffer 

stroke operation:

p → q ≡ p ↑ (q ↑ q) ≡ ¬(p ∧ ¬(q ∧ q)), (QQ)

p → q ≡ p ↑ (p ↑ q) ≡ ¬(p ∧ ¬(p ∧ q)). (PQ)

In this section, we will prove that when these tautologies are translated to the fuzzy logic framework, while the first 
construction method generates always a fuzzy implication function in the sense of Definition 2.8, the second method 
does not guarantee in general the decreasingness in the first variable.

Theorem 3.16. Let H be a fuzzy Sheffer stroke. Then the function IQQ
H : [0, 1]2 → [0, 1] defined by

I
QQ
H (x, y) = H(x,H(y, y)), x, y ∈ [0,1], (5)

is a fuzzy implication function.

Proof. Let x, y, z ∈ [0, 1] be such that x ≤ z. Using the decreasingness of H in the first variable, we obtain

I
QQ
H (x, y) = H(x,H(y, y)) ≥ H(z,H(y, y)) = I

QQ
H (z, y).

Analogously, let x, y, z ∈ [0, 1] be such that y ≤ z. Using the decreasingness of Nd
H and the one of H in the second 

variable, we get

I
QQ
H (x, y) = H(x,H(y, y)) = H(x,Nd

H (y)) ≤ H(x,Nd
H (z)) = H(x,H(z, z)) = I

QQ
H (x, z).

The border conditions are also satisfied:

I
QQ
H (0,0) = H(0,H(0,0)) = H(0,1) = 1,

I
QQ
H (1,0) = H(1,H(0,0)) = H(1,1) = 0,

I
QQ
H (1,1) = H(1,H(1,1)) = H(1,0) = 1. �

Example 3.17. Taking into account the fuzzy Sheffer strokes given in Example 3.2, let us compute which fuzzy 
implication functions are obtained by using Theorem 3.16.

(i) The fuzzy implication function generated from Hmax is given by

I
QQ
Hmax

(x, y) = Hmax(x,Hmax(y, y)) =
{

0, if x = 1 and y < 1,

1, otherwise.

(ii) The fuzzy implication function generated from Hmin is given by

I
QQ
Hmin

(x, y) = Hmin(x,Hmin(y, y)) =
{

0, if x > 0 and y = 0,

1, otherwise.

(iii) Finally, the fuzzy implication function generated from H3 is given by

I
QQ
H3

(x, y) = H3(x,H3(y, y)) = 1 − x + xy2,

for all x, y ∈ [0, 1], a polynomial fuzzy implication of degree 3 (see [6] for further details).

On the other hand, if we consider the construction method derived from Eq. (PQ), properties (I2) and (I3) are the 
only properties which are always fulfilled.

Theorem 3.18. Let H be a fuzzy Sheffer stroke. Then the function IPQ
H : [0, 1]2 → [0, 1] defined by

I
PQ
H (x, y) = H(x,H(x, y)), x, y ∈ [0,1],

satisfies (I2) and (I3).
11
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Proof. Let x, y, z ∈ [0, 1] be such that y ≤ z. Using the decreasingness of H in the second variable, we obtain

I
PQ
H (x, y) = H(x,H(x, y)) ≤ H(x,H(x, z)) = I

PQ
H (x, z)

and (I2) follows. The border conditions are also satisfied:

I
PQ
H (0,0) = H(0,H(0,0)) = H(0,1) = 1,

I
PQ
H (1,0) = H(1,H(1,0)) = H(1,1) = 0,

I
PQ
H (1,1) = H(1,H(1,1)) = H(1,0) = 1. �

In order to check that property (I1) is not guaranteed in Theorem 3.18, consider the fuzzy Sheffer stroke H3 given in 
Example 3.2. By using Eq. (PQ), the operator given by IPQ

H3
(x, y) = 1 − x + x2y for all x, y ∈ [0, 1] is obtained. This 

operator does not fulfil property (I1) since IPQ
H3

(0.5, 1) = 0.75 < 1 = I
PQ
H3

(1, 1). On the other hand, if we consider 
the fuzzy Sheffer stroke Hmax given in Example 3.2, the obtained operator:

I
PQ
Hmax

(x, y) =
{

0 if x = 1 and y < 1,

1 otherwise,

satisfies (I1) and therefore, it is a fuzzy implication function. Another example of the fulfilment of (I1) is retrieved 
when we consider H(x, y) = min{2 − x − y, 1} for all x, y ∈ [0, 1]. In that case, IPQ

H = IKD, the well-known Kleene-
Dienes implication.

Remark 3.19. Theorems 3.16 and 3.18 can be understood as generalizations of some results obtained in [7] for two 
new families of fuzzy implication functions denoted as SSpq and SSqq . Indeed, the families SSpq and SSqq are 
defined using the second equivalence in Eqs. (PQ) and (QQ) but taking t-norms and t-conorms as particular instances 
of fuzzy conjunctions and fuzzy disjunctions, respectively.

4. Construction methods of fuzzy Sheffer strokes

In this section, several different construction methods of fuzzy Sheffer strokes will be presented.

4.1. Construction method from a fuzzy conjunction and a fuzzy negation

In classical logic, Sheffer stroke is the negation of the conjunction (NAND), that is, p ↑ q = ¬(p ∧ q). This result 
is also valid in the fuzzy logic framework taking into account a fuzzy conjunction and a strict fuzzy negation.

Proposition 4.1. Let C be a fuzzy conjunction and N a fuzzy negation. Then the function HC,N : [0, 1]2 → [0, 1]
defined by

HC,N(x, y) = N(C(x, y)), x, y ∈ [0,1], (6)

is a fuzzy Sheffer stroke.

Proof. Let us prove that the operation HC,N is a fuzzy Sheffer stroke. Due to the monotonicity of C and N , we have 
that

H(x1, y) = N (C(x1, y)) ≥ N (C(x2, y)) = H(x2, y),

for all x1, x2, y ∈ [0, 1] such that x1 ≤ x2, and therefore, H is non-increasing in the first variable. It can be shown 
analogously that H is non-increasing in the second variable. The border conditions are also satisfied:

H(0,1) = N(C(0,1)) = N(0) = 1,

H(1,0) = N(C(1,0)) = N(0) = 1,

H(1,1) = N(C(1,1)) = N(1) = 0.

Thus, H(x, y) = N(C(x, y)) is a fuzzy Sheffer stroke. �

12
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Table 3
Fuzzy Sheffer strokes HC,N obtained from the basic t-norms and N = NC .

T-norm Negation HC,N

TM NC HTM,NC
(x, y) = max{1 − x,1 − y}

TP NC HTP,NC
(x, y) = 1 − xy

TL NC HTL,NC
(x, y) = min{2 − x − y,1}

TD NC HTD,NC
(x, y) =

{
1, if (x, y) ∈ [0,1)2,

max{1 − x,1 − y}, otherwise.

Using Eq. (6), we can obtain fuzzy Sheffer strokes by considering some fuzzy conjunctions and fuzzy negations. 
Let us provide several examples of fuzzy Sheffer strokes generated through this construction method.

Example 4.2. The fuzzy Sheffer strokes that are obtained from the basic t-norms and the classical negation NC are 
given in Table 3.

Example 4.3. If we consider the following family of fuzzy conjunctions Ck
P(x, y) = (xy)k , for any k > 0, and the 

classical negation NC, we obtain

HCk
P,NC

(x, y) = 1 − (xy)k.

Note that if k = 1, we recover HTP,NC
. Other two fuzzy Sheffer strokes, generated this time from the minimum t-norm 

TM and strong negations from Sugeno and Yager classes are given by

HTM,NY
ω
(x, y) = (1 − min{x, y}ω)1/ω, HTM,NS

λ
(x, y) = 1 − min{x, y}

1 + λmin{x, y} ,

respectively, with ω ∈ (0, +∞) and λ ∈ (−1, +∞). It can be checked that HTM,NY
1

= HT
M,NS

0
= HTM,NC

.

Some of the fuzzy Sheffer strokes given in the previous examples are displayed in Fig. 2.
The construction method provided by Eq. (6) is of paramount importance. Not only provides a way to construct 

fuzzy Sheffer strokes, but in fact any fuzzy Sheffer stroke can be generated from a fuzzy conjunction and a fuzzy 
negation.

Theorem 4.4. Let H : [0, 1]2 → [0, 1] be a binary operation. Then the following statements are equivalent:

(i) H is a fuzzy Sheffer stroke.
(ii) There exist a fuzzy conjunction C and a strict fuzzy negation N such that H(x, y) = N(C(x, y)) for all x, y ∈

[0, 1].

Moreover, in this case, C(x, y) = N−1(H(x, y)) for all x, y ∈ [0, 1].

Proof. (ii) implies (i) is proved already by Proposition 4.1. Conversely, let us consider now a fuzzy Sheffer stroke 
operation H . Let us consider any strict fuzzy negation N and let us define C as the binary function given by

C(x, y) = N−1(H(x, y)), x, y ∈ [0,1].
We will prove that C is a fuzzy conjunction. Due to the decreasingness of H and N−1, we have that for all x1, x2, y ∈
[0, 1], x1 ≤ x2,

C(x1, y) = N−1 (H(x1, y)) ≤ N−1 (H(x2, y)) = C(x2, y),

and therefore, C is increasing in the first variable. It can be shown analogously that C is increasing in the second 
variable. The border conditions are also satisfied:
13
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Fig. 2. Plots of some of the fuzzy Sheffer strokes presented in Examples 4.2 and 4.3.

C(1,1) = N−1(H(1,1)) = N−1(0) = 1,

C(0,1) = N−1(H(0,1)) = N−1(1) = 0,

C(1,0) = N−1(H(1,0)) = N−1(1) = 0.

Finally, the result follows since

N(C(x, y)) = N(N−1(H(x, y))) = H(x,y),

for all x, y ∈ [0, 1]. �
For notation purposes, given a strict fuzzy negation N and a fuzzy Sheffer stroke H , we will denote by CH,N the 

fuzzy conjunction defined in Theorem 4.4.

Remark 4.5. Some remarks on the previous theorem are worthy to mention:

(i) The representation of a fuzzy Sheffer stroke in terms of a pair (C, N) is not unique. Indeed, any strict fuzzy 
negation N can be chosen. However, fixed a strict fuzzy negation N , the fuzzy conjunction C is unique.

(ii) Whenever one of the natural negations of the fuzzy Sheffer stroke is strict, it can be considered to represent 
the fuzzy Sheffer stroke. In this case, both the fuzzy negation and the fuzzy conjunction are defined from the 
expression of H .

Theorem 4.4 shows a strong connection between fuzzy Sheffer strokes and fuzzy conjunctions via strict negations. 
This connection could support the idea that any forthcoming study on fuzzy Sheffer strokes can be made through the 
14
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corresponding study of the associated fuzzy conjunctions. However, from our point of view, this is not the case. Indeed, 
the connection between these two families of operators strongly depends on the fuzzy negation and the properties from 
one operator are not easily derived to the other operator due to the fuzzy negation. Moreover, in the literature there are 
analogous situations which provide strong evidence of our claim. It is well known that any fuzzy implication function 
I can be generated by means of a fuzzy disjunction D and a fuzzy negation N as the following result presented in [9]
shows:

Theorem 4.6 (see [9]). For a function I : [0, 1]2 → [0, 1], the following statements are equivalent:

1. I is a fuzzy implication function.
2. There exists a fuzzy disjunction D such that I (x, y) = D(1 − x, y) for all x, y ∈ [0, 1].

Moreover, in this case, D(x, y) = I (1 − x, y).

While this connection helps to study properties from fuzzy implication functions in terms of fuzzy disjunctions 
(e.g. exchange property vs associativity), other properties of fuzzy implication functions have no evident relation with 
known properties of the associated fuzzy disjunctions (e.g. invariance property with respect to powers of t-norms). 
This fact leads to different lines of research which evolve separately but colliding when the study needs it.

4.2. Construction method from univalued functions

In this section we present a method to generate fuzzy Sheffer strokes by means of two univalued functions with 
some specific properties.

Let us define this class of fuzzy Sheffer strokes and prove that they satisfy the axioms given in Definition 3.1.

Definition 4.7. Let f : [0, 1] → [0, +∞] be a decreasing function with f (0) = +∞ and f (1) = 0, and let 
g : [0, +∞] → [0, 1] be an increasing function with g(0) = 0 and g(+∞) = 1. The operator Hf,g : [0, 1]2 → [0, 1]
defined by

Hf,g(x, y) = g(f (x) + f (y)), x, y,∈ [0,1],
is called an (f, g)-Sheffer stroke. In this case, the pair of functions (f, g) is called the pair of additive generators of 
Hf,g .

Theorem 4.8. Let f : [0, 1] → [0, +∞] be a decreasing function with f (0) = +∞, f (1) = 0, and let g : [0, +∞] →
[0, 1] be an increasing function with g(0) = 0, g(+∞) = 1. Then Hf,g is always a fuzzy Sheffer stroke.

Proof. Let us begin proving that Hf,g is decreasing in the first variable. Let x1, x2, y ∈ [0, 1] and x1 ≤ x2, then it 
holds that f (x1) ≥ f (x2) and f (x1) + f (y) ≥ f (x2) + f (y). Thus, we have that

g (f (x1) + f (y)) ≥ g (f (x2) + f (y)) .

It can be shown analogously that Hf,g is decreasing in the second variable. Moreover, the border conditions are also 
satisfied as follows:

Hf,g(0,0) = g (f (0) + f (0)) = g(+∞) = 1,

Hf,g(0,1) = Hf,g(1,0) = g (f (0) + f (1)) = g(+∞) = 1,

Hf,g(1,1) = g (f (1) + f (1)) = g(0) = 0.

Thus, Hf,g is a fuzzy Sheffer stroke. �
As it is usual when dealing with additive generators, this construction method can be also defined using multiplica-

tive generators.
15
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Remark 4.9. If (f, g) is a pair of additive generators of an (f, g)-Sheffer stroke, we can define the decreasing 
function ϕ : [0, +∞] → [0, 1] given by ϕ(x) = g(− lnx) and the increasing function θ : [0, 1] → [0, 1] given by 
θ(x) = e−f (x), then it is obvious that for all x, y ∈ [0, 1]

Hf,g(x, y) = ϕ (θ(x) · θ(y)) .

Note that the additive generators of Hf,g can be non-continuous functions as the following example shows.

Example 4.10. Let us consider the non-continuous functions f (x) =
{

+∞, if x < 1,

0, if x = 1,
and g(x) =

{
0, if x = 0,

1, otherwise,
which satisfy the requirements of Definition 4.7. Then we obtain the fuzzy Sheffer stroke given by

Hmax(x, y) = Hf,g(x, y) =
{

0, if (x, y) = (1,1),

1, otherwise,

which is the maximum fuzzy Sheffer stroke given in Example 3.2.

From the representation theorem of fuzzy Sheffer strokes in terms of fuzzy conjunctions and negations, we know 
that given a fuzzy Sheffer stroke H and a strict fuzzy negation N , we can define the associated fuzzy conjunction 
CH,N . Next result shows under which conditions the associated conjunction of an (f, g)-Sheffer stroke is a t-norm.

Proposition 4.11. Let N be a strict fuzzy negation and (f, g) be a pair of additive generators of an (f, g)-Sheffer 
stroke with g continuous and strictly increasing. Then the following statements are equivalent:

(i) CHf,g,N = N−1 ◦ Hf,g is a t-norm.
(ii) f = g−1 ◦ N .

In this case, the expression of the fuzzy Sheffer stroke is given by

Hg,N(x, y) = g
(
g−1(N(x)) + g−1(N(y))

)
for all x, y ∈ [0, 1].

Proof. On the one hand, let CHf,g,N = N−1 ◦Hf,g be a t-norm and let us prove that f = g−1 ◦N . Since 1 is the neutral 
element of a t-norm, N−1(Hf,g(x, 1)) = x for all x ∈ [0, 1]. This implies that Hf,g(x, 1) = N(x). Furthermore, as 
f (1) = 0 we deduce that

Hf,g(x,1) = g (f (x) + f (1)) = g (f (x)) .

Thus, g (f (x)) = N(x) for all x ∈ [0, 1] and since g is a continuous and strictly increasing function, we obtain that 
f (x) = g−1(N(x)).

On the other hand, let us consider now f = g−1 ◦N and let us prove that CHf,g,N = N−1 ◦Hf,g is a t-norm. Firstly, 
let us check that f is well defined. It is clear that f : [0, 1] → [0, +∞] is decreasing and continuous. Furthermore,

f (0) = g−1(N(0)) = g−1(1) = +∞, f (1) = g−1(N(1)) = g−1(0) = 0.

Thus, (f, g) is indeed a pair of additive generators of a fuzzy Sheffer stroke. Now, we have that

CHf,g,N (x, y) = N−1(Hf,g(x, y)) = N−1
(
g

(
g−1(N(x)) + g−1(N(y))

))
= (g−1 ◦ N)−1

(
g−1(N(x)) + g−1(N(y))

)
,

which is clearly a strict t-norm with f = g−1 ◦ N as additive generator. �

16
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At this point, we will study whether the additional properties (H4)-(H7) introduced in Section 3.2.2 are fulfilled by 
the family of fuzzy Sheffer strokes given by Hg,N . It is evident that Hg,N always satisfy (H6) for all strict negations 
N and continuous and strictly increasing functions g : [0, +∞] → [0, 1]. However, they do not necessarily satisfy the 
other properties as the following results show.

Proposition 4.12. Let g : [0, +∞] → [0, 1] be a continuous and strictly increasing function and N be a strict fuzzy 
negation. Then the following statements are equivalent:

(i) Hg,N satisfies (H4).

(ii) There exists an automorphism ϕ : [0, 1] → [0, 1] such that N(x) = g

(
g−1

(
(NC)ϕ(x)

)
2

)
.

Proof. On the one hand, if Hg,N satisfies (H4), then we already know that Nd
Hg,N

is a strong fuzzy negation. Therefore, 

there exists an automorphism ϕ : [0, 1] → [0, 1] such that Nd
Hg,N

(x) = (NC)ϕ (x). Since Nd
Hg,N

(x) = g
(
2g−1 (N(x))

)
and g is a continuous and strictly increasing function we obtain that

N(x) = g

(
g−1

(
(NC)ϕ (x)

)
2

)
.

On the other hand, if (ii) holds, then:

Hg,N(x, y) = g
(
g−1(N(x)) + g−1(N(y))

)
= g

(
g−1((NC)ϕ (x)) + g−1((NC)ϕ (y))

2

)
,

and consequently, Hg,N(x, x) = (NC)ϕ (x). From this it follows that

Hg,N(Hg,N (x, x),Hg,N (x, x)) = Hg,N((NC)ϕ (x), (NC)ϕ (x)) = (NC)ϕ
(
(NC)ϕ (x)

) = x,

and Hg,N satisfies (H4). �
Example 4.13. Consider g(x) = x

x+1 , ϕ(x) = x and N(x) = 1−x
1+x

for all x ∈ [0, 1]. Since in this case the conditions 

presented in Proposition 4.12-(ii) hold, the fuzzy Sheffer stroke Hg,N(x, y) = x+y−2xy
x+y

for all x, y ∈ [0, 1] satisfies 
Property (H4).

On the contrary, Hg,N never satisfies (H5).

Proposition 4.14. Let g : [0, +∞] → [0, 1] be a continuous and strictly increasing function and N be a strict fuzzy 
negation. Then Hg,N never satisfies (H5).

Proof. On the contrary, if Hg,N satisfies (H5), then for all x ∈ [0, 1], we have that

N(x) = g
(
g−1(N(1)) + g−1(N(x))

)
= Hg,N(1, x) = Hg,N(x, x) = g(2g−1(N(x))).

This implies that 2g−1(N(x)) = g−1(N(x)) and g−1(N(x)) = 0, which would lead to N(x) = g(0) = 0 for all x ∈
[0, 1], arising a contradiction. �

It remains still an open problem whether there exist some g and N such that Hg,N satisfies (H7).

5. An example application of the fuzzy Sheffer stroke

In this section, a potential application of the fuzzy Sheffer stroke is presented in order to prove the importance of 
disposing of such operation in the fuzzy logic framework. Let us consider a refrigerator with two sensors connected 
to an alarm system which warns the user if the internal temperature of the refrigerator is abnormally high. One of the 
17
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sensors controls the opening angle of the door of the refrigerator and the other one quantifies the internal temperature 
of the refrigerator.

Let A : X → [0, 1] and B : Y → [0, 1] be two fuzzy sets where X is the set of possible opening angles of the door 
and Y is the set of the possible internal temperatures. Thus, A and B are fuzzy sets which represent the closedness and 
coldness of the refrigerator, respectively. For instance, on the one hand, A(0) = 1, i.e., if the door is closed, closedness 
is maximum and A(xmax) = 0 if xmax is the angle described by the door whenever it is completely open. On the other 
hand, B(ymin) = 1 if ymin is the desired internal temperature that the user has set and B(ymax) = 0 if ymax is the 
highest potential temperature.

Consider that the alarm system has a wide range of intensities. Let F : A × B → [0, 1] be the function that models 
the intensity of this alarm. If F(a, b) = 0 the alarm is off, but as F(a, b) increases, so does the intensity of the alarm. 
The intensity can be represented in real life either with the volume of a sound or the period of a blinking light. Let us 
analyse the expected behaviour of this function. The following extremal cases are straightforward:

• If the door is completely open, A(x) = 0, then the intensity must be at its peak. Thus F(0, b) = 1 for all b ∈ [0, 1].
• If the internal temperature of the fridge is very hot, B(y) = 0, then the intensity must be also at its peak. Thus, 

F(a, 0) = 1 for all a ∈ [0, 1].
• If the door is closed, A(x) = 1, and the internal temperature of the fridge is the desired one, B(y) = 1, then the 

alarm should be off. Thus, F(1, 1) = 0.

Furthermore, on the one hand, when the opening angle of the door decreases, so should decrease the intensity of the 
alarm. That is, if a1 ≤ a2, then F(a1, b) ≥ F(a2, b) for all b ∈ [0, 1]. On the other hand, when the internal temperature 
decreases, the intensity of the alarm should also decrease. That is, if b1 ≤ b2, then F(a, b1) ≥ F(a, b2) for all a ∈
[0, 1].

In this way, it is evident that we can use a fuzzy Sheffer stroke to model the alarm behaviour of this refrigerator. 
This operator can represent the fuzzy modelization that it is needed in this case saving energy and letting the user to 
approximately know the urgency degree of the problem.

6. Conclusions and future work

In this paper, the Sheffer stroke operation in the context of fuzzy logic has been introduced. This operation is of 
paramount importance in classical logic since it can be used to generate all the other logical connectives by itself 
without the need of any other one. The results presented in this paper prove that this is also the case in the fuzzy 
logic framework in which the fuzzy Sheffer stroke can be used to define fuzzy negations, conjunctions, disjunctions 
and implication functions by itself. Moreover, it can also generate t-norms and t-conorms under some conditions. In 
Section 4, two construction methods for fuzzy Sheffer strokes have been presented. Furthermore, the close connec-
tion of this operation with a pair of a fuzzy conjunction and a fuzzy negation has been analysed. Finally, a real-life 
application where a fuzzy Sheffer stroke can play an important role has been proposed.

Several open problems have appeared throughout the paper. Specifically,

• Under which additional conditions of a fuzzy Sheffer stroke a t-norm or a t-conorm can be obtained through 
Eqs. (1) and (2)?

• Characterize the subfamily of Hg,N fuzzy Sheffer strokes satisfying (H7).

In addition to study these open problems, as a future work, we want to study in depth the families of fuzzy implication 
functions IQQ

H and IPQ
H , analyse their additional properties and to characterize under which conditions IPQ

H is a fuzzy 
implication function in the sense of Definition 2.8.
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[7] W. Niemyska, M. Baczyński, S. Wa̧sowicz, Sheffer stroke fuzzy implications, in: J. Kacprzyk, E. Szmidt, S. Zadrożny, K. Atanassov, M. 
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