Complex lasso: new entangled motifs in proteins

Supplementary Material
Wanda Niemyska, Pawel Dabrowski-Tumanski, Michal Kadlof, Ellinor Haglund, Piotr Sułkowski and Joanna I. Sulkowska

Contents

1 Construction of minimal surfaces 1
1.1 Area Minimizing 3
1.2 Laplacian Fairing 3
1.3 Edge Swapping 4
1.4 Initialization 5
1.5 Identification of lasso types 5
2 Details of protein reconstruction 7
3 Full list of proteins 10
4 Posttranslational modifications 23
5 List of multimeric proteins 25
6 Complex lasso classification based on CATH database 26
7 Examples of proteins with various lasso structures 27
8 Analysis of proteins with small covalent loops 31
9 Mini-proteins 33
10 Structural alignment of proteins with L_{6} lasso type 35

1 Construction of minimal surfaces

As described in the main manuscript, we define complex lassos as configurations in which backbone tails pierce through a surface spanned on loop formed by a part of the backbone chain. We note, that our procedure could be as well applied to any other well defined loop, possibly in other (bio)polymers. We classify lassos with respect to the number of crossings (piercings) through this surface. Note that on a fixed boundary (the covalent loop) in \mathbb{R}^{3} one can span an infinite number of surfaces. Therefore an unambiguous definition and construction of such surface is crucial for our work.
In our analysis we have decided to work with minimal surfaces. Intuitively, mininmal surface is a surface that would be formed by a soap bubble spanned on a given
boundary. There are several equivalent definitions of such surfaces (connecting various mathematical disciplines). One of them is the local minimization condition: a surface $M \subset \mathbb{R}^{3}$ is minimal if and only if every point $p \in M$ has a neighborhood with the smallest area relative to its boundary. Notice that this is a local property: for a fixed global boundary there might be many such surfaces, possibly with different (smaller) global area. In our applications however surfaces determined with the local condition were sufficient. It can be shown that with appropriate assumptions the minimal surfaces can be equally well defined as a critical point of the Dirichlet energy functional, or as a surface with vanishing mean curvature.

In practical applications we need to work with discrete, triangulated versions of minimal surfaces, approximating the smooth surface. We construct such triangulated surfaces using discrete analogs of local area minimization and minimal Dirichlet energy conditions. The boundary of a triangulated surface is also discretized, being the polygonal chain in \mathbb{R}^{3} with vertices in positions of $C \alpha$ atoms of the loop.

There are several algorithms, used in particular in computer graphics, that determine such triangulations. In our work we implemented a slightly modified version of an algorithm discussed in [1]. The initial data for this algorithm consists of coordinates of n vertices in the covalent loop, and the number of triangles in the triangulation that we are going to construct. This number allows to adjust the level of details of the resulting mesh - the larger the number, the surface is approximated more accurately. Once some initial mesh has been specified (as described in section 1.4 below), we iteratively adjust it by performing three operations that minimize the (local) area and the Dirichlet energy: Area Minimizing, Laplacian Fairing and Edge Swapping.

The scheme of applied algorithm is as follows [1]:

1. Initialization
2. Edge Swapping
3. DO \{
4. DO Laplacian Fairing WHILE (area change $>\epsilon_{1}$)
5. Edge Swapping
6. DO Area Minimizing WHILE (area change $>\epsilon_{2}$)
7. Edge Swapping
8. $\}$ WHILE (area change $>\epsilon_{0}$)

Positive constants $\epsilon_{0}, \epsilon_{1}$ and ϵ_{2} above are three fixed tolerance parameters - we quit the iteration if the modification of a triangulation in a given step does not change the surface area sufficiently (more than the relevant ϵ parameter).

In what follows we discuss each step of the algorithm in more detail. We use the similar notation as in [1]. A triangular mesh M is represented as a triple $\langle I, P, T\rangle$, where $I=\{1,2, \ldots, N\}$ is the set of its vertices, $P: I \rightarrow \mathbb{R}^{3}$ is a mapping assigning each vertex
index its position in 3-dimensional space, and T is a set of triangles. Each triangle $t \in T$ is represented as an ordered triple $t=\langle i, j, k\rangle$ for $i, j, k \in I$ (with the vertices positions at $P(i), P(j)$ and $P(k))$. For simplicity we write $P_{i} \equiv P(i)$. Furthermore we assume that first n indices in I correspond to the fixed vertices of the boundary polygon (the covalent loop in a protein); to adjust the triangulation we can change locations of last $N-n$ vertices.

1.1 Area Minimizing

The area A of the mesh $M=\langle I, P, T\rangle$ is the sum of the areas of all triangles from the set T

$$
\begin{equation*}
A(M)=\sum_{t=\langle i, j, k\rangle \in T} \frac{1}{2}\left|P_{j} P_{k} \times P_{j} P_{i}\right| . \tag{1}
\end{equation*}
$$

In the process of Area Minimizing (step 6 in our algorithm) we adjust coordinates P_{n+1}, \ldots, P_{N} in order to minimize the value area functional $A(M)$. To this end we need to find a solution of the system of equations $\frac{\partial A(M)}{\partial P_{h}}=0$, for all $h \in\{n+1, \ldots, N\}$. This set is equivalent to [1]:

$$
\begin{align*}
P_{h}= & -\left(\sum_{\langle h, j, k\rangle \in N T(h)} \frac{\left(P_{j} P_{k}\right)^{2} I_{3}-\left(P_{j} P_{k}\right)\left(P_{j} P_{k}\right)^{T}}{\left|P_{j} P_{k} \times P_{j} P_{h}\right|}\right)^{-1} \\
& \times \sum_{\langle h, j, k\rangle \in N T(h)} \frac{\left(P_{j} P_{k} \cdot P_{j}\right) P_{j} P_{k}-\left(P_{j} P_{k}\right)^{2} P_{j}}{\left|P_{j} P_{k} \times P_{j} P_{h}\right|} \tag{2}
\end{align*}
$$

where $N T(i) \subseteq T$ is the set of all triangles containing vertex P_{i}, and I_{3} is the 3×3 identity matrix. As the right-hand side of the above equation contains P_{h}, this is the iterative procedure of approximating the P_{h} position. This process can be repeated until the given tolerance ϵ_{2} is reached.

1.2 Laplacian Fairing

With Laplacian Fairing we change the coordinates of mesh vertices in a way that minimizes the discrete version of Dirichlet energy functional. The continuous form of Dirichlet energy functional is

$$
\begin{equation*}
\frac{1}{2} \int_{\Omega}\|\nabla r(x)\|^{2} d V=\frac{1}{2} \int_{\Omega}\left(r_{u}^{2}(u, v)+r_{v}^{2}(u, v)\right) d u d v \tag{3}
\end{equation*}
$$

where $r_{u}=\partial_{u} r$ and $r_{v}=\partial_{v} r, \Omega$ is a closed subset of \mathbb{R}^{2} and $r: \Omega \rightarrow \mathbb{R}^{3}$ is a parametrization of the surface with boundary $\partial[r(\Omega)]$. It is known that critical points of the Dirichlet functional are harmonic functions, i.e. parametrizations r whose Laplacian vanishes, $\Delta r(u, v)=r_{u u}+r_{v v}=0$. In discrete mesh we use a discrete version of the Laplacian, which at each vertex can be expressed by the so-called umbrella operator

$$
\begin{equation*}
\Delta\left(P_{i}\right)=\sum_{j \in N(i)} w_{i j}\left(P_{j}-P_{i}\right), \tag{4}
\end{equation*}
$$

where $N(i) \subseteq I$ is the set of indices of vertices neighboring the vertex i, and $w_{i j}$ are weights normalized so that $\sum_{j \in N(i)} w_{i j}=1$ for each $i \in I$. As in the smooth case, the discrete Laplacian measures the difference between the value of a function at a particular point and the average of that function in its neighbors.

The weights $w_{i j}$ in the formula (4) may be chosen in many different ways. In our implementation we define these weights by

$$
w_{i j}=\frac{1}{2}\left(\operatorname{ctg}\left(\alpha_{1 i j}\right)+\operatorname{ctg}\left(\alpha_{2 i j}\right)\right)
$$

where $\alpha_{1 i j}$ and $\alpha_{2 i j}$ are angles in two triangles that share the edge $P_{i} P_{j}$, opposite to this edge. Our definition of weights differs slightly from the one given in [1]

In Laplacian Fairing we impose the condition that the discrete Laplacian vanishes, $\Delta\left(P_{i}\right)=0$, for all interior vertices $P_{i}, i \in\{n+1, \ldots, N\}$. This leads to a system of $(N-n)$ (usually nonlinear) equations with $(N-n)$ variables, which cannot be solved explicitly, but enables to approximate each P_{i} iteratively with:

$$
\begin{equation*}
\overline{P_{i}}=\sum_{j \in N(i)} w_{i j} P_{j} \tag{5}
\end{equation*}
$$

where weights $w_{i j}$ are computed from the old locations P_{i} and P_{j} and $\overline{P_{i}}$ is the new location.

1.3 Edge Swapping

In the process of Edge Swapping we change the connectivity of the mesh in the way that it minimizes the local area. We consider all pairs of triangles which share one edge (e.g. $t_{1}=\langle i, j, h\rangle$ and $\left.t_{2}=\langle i, j, k\rangle\right)$ and replace the common edge $P_{i} P_{j}$ by the edge $P_{h} P_{k}$, if only it results in a triangulation of smaller area (see Fig. 1). Note that locations of the four vertices $P_{i}, P_{j}, P_{h}, P_{k}$ remain unchanged - the only modification is in the connectivity of these vertices.

In a single Edge Swapping iteration we consider consecutively all edges in the mesh. If at least one swapping takes place (based on the above criteria) we continue this process. This operation is very fast and simple, however it returns just a local optimum (it is possible to find a global minimum, however with much higher computational cost).

Figure 1: Edge Swapping.

1.4 Initialization

The initial mesh may be somehow arbitrary; we construct it as follows. First we specify the number of triangles m in the triangulation we are after. Second, we specify the polygonal boundary P_{1}, \ldots, P_{n} consisting of (fixed) n points; to obtain more accurate triangulation, we can also divide boundary segments into shorter ones. Third, we compute the center of mass P_{c} of this boundary polygon and add s interior vertices along each line segment $P_{i} P_{c}, i \in\{1,2, \ldots, n\}$. The number s is determined in order to obtain ca. m triangles in the mesh; some of these triangles are subsequently split into three smaller ones to get precisely m triangles in the mesh. Finally, we connect the vertices as shown in Fig. 2 (left panel). Our implementation differs slightly from original [1] shown in the right panel in Fig. 2. We reduce the number of edges sharing the center of mass P_{c} - this makes the central region of the triangulation less dense, and results in a smoother triangulated minimal surface.

Figure 2: Left panel: an example of the initial mesh used in our algorithm, with three additional vertices P_{3}, P_{7} and P_{11} in the boundary. Right panel: the initial mesh for the same input used in the implementation of the algorithm in [1].

1.5 Identification of lasso types

Once the triangulation of the minimal surface is determined we can verify which segments of the protein tail (or two tails) cross the surface. To identify a lasso type we also need to determine the direction of crossing (if only the surface is orientable which in our work always was the case). We denote the direction by drawing pierced triangles in different colors (e.g. in Fig. 3 blue and green triangles are pierced from opposite directions), and label the segments of a tail that pierce the surface with plus or minus signs respectively (e.g. tail segments denoted -10 and +289 in Fig. 3 pierce the surface from opposite directions).

Note that some proteins have complicated backbone configuration, giving rise to complicated, self-intersecting surfaces. In such cases it is convenient to present the triangulated surface as a planar barycentric embedding, in which each vertex of a triangulation is an average of vertices it is connected to. By a theorem by Tutte, such
representation can be uniquely determined purely from the connectivity structure of a triangular surface. We use a well known algorithm by Tutte [3] to determine such baricentric representation (with hyperbolic modification of the positions of the vertices in order to present it in a more pleasing way). As an example, such planar barycentric embedding for triangulated minimal surface spanned on a covalent loop in the protein with PDB code 3om0, is shown in Fig. 3.

Figure 3: Left panel: cartoon representation of glutamate receptor, ionotropic kainate 5 protein (PDB code 3om0). Middle panel: triangulation of a minimal surface for 3om0 protein. The minimal surface, spanned on the covalent loop, is pierced twice by a tail (from opposite directions), through triangles in blue and green. Two cysteins and a cystein bond are shown in orange. Right panel: baricentric representation of a minimal triangulated surface for 30 m 0 protein. Two cysteins and a cystein bond comprise a part of the boundary and are shown in orange. Green and blue triangles are pierced from opposite sides by 10th and 289th tail segment respectively.

In our analysis we try not to include proteins whose lasso structure could be changed by thermal fluctuations. First, we impose a condition that there must be at least 10 amino acids separation between consecutive crossings (from opposite directions), i.e. a piece of a tail piercing a surface must be sufficiently "deep". There is one exception from this rule. Observe in Fig. 4 (right panel) that one may find a complex protein structure where a minimal surface spanned on a covalent loop, which has two distinct pieces located close to each other. In such case a tail may pierce both pieces of the surface and have less than 10 amino acids between these two crossings, but nonetheless we include such structures in our analysis. To detect such configurations automatically we compute (using Dijkstra algorithm) the shortest distance (along segments of the triangulation of the minimal surface) between two triangles that are pierced by a tail. If this distance is long enough (larger than 10 segments of the mesh) we include such a structure in our classification.

We also demand that the segment between the cysteine bridge and the first piercing includes at least 4 amino acids, see Fig. 4 (left panel).

Figure 4: Left: in 3utk protein there are less than 4 amino acids between the cysteine bridge and the first piercing, therefore we don't include this protein in our analysis. Right: in 4p1e protein a short (less than 10 amino acids) tail segment pierces two separated triangles in a surface than is bent - included in our analysis.

2 Details of protein reconstruction

Homologue structures were identified with psi-blast algorithm (implemented in MODELLER software) run against all PDB sequences database provided by MODELLER team (http://salilab.org/modeller/downloads/pdball.pir.gz) with default parameters. Targets and template candidates were superimposed, and 3D alignment was calculated with Chimera [2] software. With these alignments, gaps coverage of found homologues was calculated. The first factor in the selection of a template was the overall percentage of the gap coverage in the alignment and the second the sequence similarity. All structures that had gaps longer than 8 amino acids without coverage were rejected. All structures left have been individually inspected with support of KnotProt database [4]. Doubtful structures were rejected.

Figure 5: Example of a gapped structure (PDB code 1a7s chain A), with missing coordinates of 4 amino acids from the loop region, that were reconstructed with Modeller to determine a complex lasso type. Thick lines denote the original PDB structures (a backbone CA chain trace), thin lines mark modeled loops that were used to identify a lasso type.

Type	PDB Codes
A	1auk_A 1evs_A 1fsu_A 1g3p_A 1jvq_A 11sh_A 1me8_A 1p49_A 1uhg_A 1z70_A 2bb3_A 2j04_B 2qqh_A 2wsd_A 2z04_A 2zf8_A 3a77_A 3c64_A 3ep1_A 3g89_A 3hi7_A 3kt7_A 3m03_A 3m8n_A 3nir_A 3nt1_A 3pgb_A 3sxx_A 3tw5_A 3vuo_A 3wky_A 4cvu_A 4d9i_A 4db5_A 4gqz_A 4kc3_B 410k_A 411d_A 4m7g_A 4mai_A 4ncd_A 4nn5_A 4o4y_L 4o5j_A 4o5p_B 4o65_A 4o6k_A 4oh3_A 4osn_A 4p79_A 4pmk_A 4r7q_A 4tmd_A 4uvq_A 4uxu_A 4wat_A
B	1a7s_A 1agq_A 1alu_A 1ax8_A 1b12_A 1b8k_A 1bcp_A 1bgc_A 1bqu_A 1bu8_A 1cru_A 1d2t_A 1dof_A 1dx4_A 1egi_A 1f0l_A 1f2q_A 1f32_A 1f97_A 1fcq_A 1fo8_A 1g5g_A 1gcy_A 1gku_B 1gml_A 1gv9_A 1h30_A 1hc1_A 1huw_A 1ijq_A 1jdp_A 1jnd_A 1js8_A 1jy5_A 1kl9_A 1kxo_A 1nst_A 1o3u_A 1oi0_A 1olz_A 1omz_A 1p53_A 1p91_A 1pb7_A 1peq_A 1pew_A 1pgu_A 1pko_A 1ps1_A 1pwa_A 1pz7_A 1q35_A 1q8d_A 1qfo_A 1qfx_A 1qg8_A 1qgv_A 1qht_A 1r3e_A 1rxd_A 1uzk_A 1v0w_A 1v9m_A 1va6_A 1w07_A 1w8a_A 1w8k_A 1x9d_A 1xez_A 1xju_A 1yi9_A 1yis_A 1z4v_A 1ziw_A 1zk5_A 1zro_A 2aew_A 2arr_A 2b7u_A 2b9l_A 2bce_A 2bgh_A 2bog_X 2bou_A 2bsy_A 2c2a_A 2c9k_A 2cdc_A 2d1g_A 2d1h_A 2ddf_A 2ddu_A 2de0_A 2di4_A 2dre_A 2dvk_A 2e1v_A 2ecf_A 2eng_A 2 fiy_A $2 f j 0 _A ~ 2 f n a _B ~ 2 f y 7 _A ~ 2 g 5 d _A ~ 2 g a k _A ~ 2 g u m _A ~ 2 g y s _A ~ 2 h 2 t _A ~$ 2heh_A 2hft_A 2hlr_A 2hq4_A 2i10_A 2id5_A 2im9_A 2iy9_A 2j0a_A 2jd4_A 2jg0_A 2jju_A 2jks_A 2 mpr _A 2 nsm _A 2 nw 2 _A $2 n x f$ _A $2 n y k _A 205 n _A 20 a y _A 20 d p _A 2 p f 5 _A 2 p f c _A ~ 2 p m v _A$ 2pq6_A 2prs_A 2qki_A 2qn4_A 2r2j_A 2raa_A 2rag_A 2rl8_A 2uur_A 2uy2_A 2veq_A 2vl7_A 2vsm_A 2vxb_A 2 w 1 z _A 2 w 2 g _A 2 w 59 _A $2 \mathrm{w} 61 _$A 2 w 9 x _A 2 wjs _A 2 wnf _A 2 wnk _A 2 wnv _A 2 wy 3 _A 2x1q_A $2 x 2 u _A 2 x 4 i _A ~ 2 x l g _A ~ 2 x o t _A ~ 2 x r c _A ~ 2 x u 0 _A ~ 2 y 38 _A ~ 2 y 8 d _A ~ 2 y 8 t _A ~ 2 y d 6 _A ~ 2 y d v _A ~$ 2yg2_A 2ykt_A 2ymo_A 2z2r_A 2z3q_A 2z4i_A 2zb6_A 2zou_A 2zws_A 2zxe_B 3agk_A 3ahq_A 3aja_A 3ajd_A 3ap1_A 3b1b_A 3b4n_A 3bix_A 3bqk_A 3bwu_D 3c3v_A 3ci0_A 3cj1_A 3cqn_A 3cwx_A 3czb_A 3d22_A 3db5_B 3dlq_I 3dxl_A 3e0g_A 3e2v_A 3ebw_A 3eeq_A 3erb_A 3f6k_A 3f95_A 3fgr_A 3fsa_A 3fvc_A 3fw3_A 3g4n_A 3g7n_A 3gax_A 3ghm_A 3gnz_A 3grf_A 3h09_A 3h2g_A 3h6g_A 3hhs_A 3hr6_A 3hsy_A 3i26_A 3i2t_A 3i6s_A 3i84_A 3icv_A 3ix0_A 3j0a_A 3jpw_A 3jxg_A 3k1l_A 3k1w_A 3k7b_A 3kbr_A 3kgl_A 3ks9_A 3ky9_A 3l4y_A 3llk_A 3lo8_A 3m19_A 3m1c_A 3m31_A 3m7p_A 3n7s_A 3nhi_A 3nk4_A 3nkq_A 3nsj_A 3nvx_A 3o22_A 3o6n_A 3odn_A 3oe3_A 3oen_A 3og6_A 3ojo_A 3okw_A 3om0_A 3omz_A 3p09_A 3pay_A 3pim_A 3pjz_A 3pow_A 3pv7_A 3pvk_A 3qcp_A 3qdh_A 3qek_A 3r1p_A 3rjo_A 3rm2_A 3rnq_A 3rty_A 3s26_A 3s98_A 3s9d_A 3sao_A 3sqr_A 3suu_A 3syj_A 3szh_A 3t0o_A 3t4l_A 3tc2_A 3thd_A 3tql_A 3u07_A 3u3l_A 3u74_U 3uan_A 3ub2_A 3ugf_A 3un7_A 3vpp_A 3vrh_A 3vta_A 3vu1_A 3vuu_A 3w2w_B 3w56_A 3weo_A 3whx_A 3wn4_A 3zgj_A 3zh5_A 3zib_A 3zxy_A 3zy2_A 3zyo_A 4a01_A 4adi_A 4ae2_A 4aee_A 4apm_A 4aqs_A 4art_A 4aru_A 4awe_A 4ay0_A 4b4h_A 4b87_A 4ba0_A 4bqy_A 4bsj_A 4buo_A 4bvn_A 4bwe_A 4c08_A 4cbp_A 4ccd_A 4cg1_A 4ci9_A 4cn9_A 4cu4_A 4cxp_A 4d8m_A 4d94_A 4dlo_A 4dlq_A 4dzr_A 4e6w_A 4eco_A 4ekx_A 4el6_A 4eme_A 4enz_A 4eyc_A 4fhq_A 4fr4_A 4ftb_A 4fww_A 4g2u_A 4gf2_A 4gqp_H 4h18_A 4hho_A 4hln_A 4hr9_A 4i0w_A 4i71_A 4iib_A 4ijy_A 4io2_A 4irm_A 4irp_A 4isc_A 4j2k_A 4j37_A 4j3r_A 4jd9_A 4jjh_A 4jjj_A 4job_A 4jqf_A 4jrn_A 4jvu_A 4jzz_A 4k3l_A 4k3y_A 4k60_A 4k8l_A 4kg7_A 4kgh_A 4kki_A 4kqa_A 4kt3_A 4kx7_A 4l7g_A 4le6_A 4lk4_A 4lv5_A 4lxr_A 4mh1_A 4mj2_A 4ms4_A 4msv_A 4myk_A 4myv_A 4mz2_A 4mz7_A 4nmx_A 4nob_A 4nqw_A 4nuu_A 4oe8_A 4p04_A 4p1e_A 4p49_A 4per_A 4plm_A 4rha_A 4tqg_A 4tr2_A 4v2d_A

Table 1: A. PDB codes of proteins with chain annotation (the last letter), with positions of some atoms along the chain not determined experimentally, and for which it was impossible to determine whether the repaired model has correct complex lasso type. B. PDB codes of proteins with chain annotation (the last letter), with positions of some atoms along the chain not determined experimentally, whose chains and complex lasso type were successfully modeled.

3 Full list of proteins

PDB code	Loop range	Function (classification)	Organism Species	Organism Genus
1AC5_A	79-345	Carboxypeptidase	Saccharomyces cerevisiae	Saccharomyces
1AHL_A	6-36	Neurotoxin	Anthopleura xanthogrammica	Anthopleura
1AHO_A	12-63	Neurotoxin	Androctonus australis	Androctonus
1AK0_A	72-217	Endonuclease	Penicillium citrinum	Penicillium
1AOC_A	60-161	Coagulation factor	Tachypleus tridentatus	Tachypleus
1AOZ_A	81-538	Oxidoreductase	Cucurbita pepo var. melopepo	Cucurbita
1ATA_A	22-60	Proteinase	Ascaris suum	Ascaris
1AX8_A	96-146	Cytokine	Homo sapiens	Homo
1B8W_A	16-32	Toxin	Ornithorhynchus anatinus	Ornithorhynchus
1BCP_A	41-201	Toxin	Bordetella pertussis	Bordetella
1BDS_A	6-32	Anti-hypertensive protein	Anemonia sulcata	Anemonia
1BEA_A	29-86	Serine protease inhibitor	Zea mays	Zea
1BF0_A	32-53	Calcium channel blocker	Dendroaspis angusticeps	Dendroaspis
1C01_A	11-64	Antimicrobial	Macadamia integrifolia	Macadamia
1C01_A	23-49	Antimicrobial	Macadamia integrifolia	Macadamia
1CCV_A	20-56	Hydrolase 3	Apis mellifera	Apis
1CFE_A	44-112	Pathogenesis-related	Solanum lycopersicum	Solanum
1CPY_A	56-298	Hydrolase	Saccharomyces cerevisiae	Saccharomyces
1CQ3_A	8-185	Cytokine	Cowpox virus	Orthopoxvirus
1D2S_A	164-188	Transport	Homo sapiens	Homo
1D6B_A	16-32	Toxin	Ornithorhynchus anatinus	Ornithorhynchus
1DOF_A	167-403	Lyase	Pyrobaculum aerophilum	Pyrobaculum
1DP4_A	164-213	Hormone/growth factor	Rattus norvegicus	Rattus
1DTV_A	18-62	Hydrolase	Hirudo medicinalis	Hirudo
1DTV_A	19-43	Hydrolase	Hirudo medicinalis	Hirudo
1DTV_A	22-58	Hydrolase	Hirudo medicinalis	Hirudo
1DYS_A	93-152	Cellulase	Humicola insolens	Humicola
1E4M_A	14-434	Hydrolase	Sinapis alba	Sinapis
1E4M_A	6-438	Hydrolase	Sinapis alba	Sinapis
1ESC_A	197-255	Hydrolase	Streptomyces scabiei	Streptomyces
1ETE_A	44-127	Cytokine	Homo sapiens	Homo
1FD3_A	15-30	Antimicrobial	Homo sapiens	Homo
1FJR_A	70-164	Signaling protein	Drosophila melanogaster	Drosophila
1FLC_A	126-174	Hydrolase	Influenza c virus	Influenzavirus C
1FLC_A	196-238	Hydrolase	Influenza c virus	Influenzavirus C
1FOB_A	253-311	Hydrolase	Aspergillus aculeatus	Aspergillus
1G66_A	147-179	Hydrolase	Penicillium purpurogenum	Talaromyces
1G6X_A	30-51	Hydrolase	Bos taurus	Bos
1GAK_A	60-134	Cell adhesion	Haliotis fulgens	Haliotis
1GP0_A	1598-1634	Receptor	Homo sapiens	Homo
1GXY_A	21-223	Transferase	Rattus norvegicus	Rattus
1H30_A	444-470	Growth arrest spec.	Homo sapiens	Homo
1H30_A	643-670	Growth arrest spec.	Homo sapiens	Homo
1HCN_B	23-72	Hormone	Homo sapiens	Homo
1HCN_B	26-110	Hormone	Homo sapiens	Homo
1HX2_A	21-60	Hydrolase	Bombina bombina	Bombina
1I1J_A	35-106	Hormone/growth factor	Homo sapiens	Homo
Continued on the next page				

Table 2 - continued from the previous page

| PDB | Loop | Function
 (classification) | Organism
 code | range |
| :---: | :---: | :---: | :---: | :---: | Species \quad Organism

Table 2 - continued from the previous page

PDB code	Loop range	Function (classification)	Organism Species	Organism Genus
1UWC_A	29-258	Hydrolase	Aspergillus niger	Aspergillus
1UZK_A	1549-1574	Glycoprotein	Homo sapiens	Homo
1VF8_A	28-373	Immune system	Mus musculus	Mus
1W8K_A	265-363	Antigen	Plasmodium vivax	Plasmodium
1W8K_A	388-444	Antigen	Plasmodium vivax	Plasmodium
1WC2_A	30-69	Hydrolase	Mytilus edulis	Mytilus
1WC2_A	65-178	Hydrolase	Mytilus edulis	Mytilus
1WC2_A	72-157	Hydrolase	Mytilus edulis	Mytilus
1WKT_A	11-72	Toxin	Williopsis saturnus var. mrakii	Cyberlindnera
1WKT_A	27-58	Toxin	Williopsis saturnus var. mrakii	Cyberlindnera
1WQK_A	6-30	Toxin	Anthopleura elegantissima	Anthopleura
1WS8_A	58-92	Electron transport	Cucurbita pepo	Cucurbita
1X8Q_A	41-171	Ligand binding	Rhodnius prolixus	Rhodnius
1XTA_A	56-134	Toxin	Naja atra	Naja
1XTM_B	93-186	Structural protein	Bacillus subtilis	Bacillus
1YG9_A	51A-113	Hydrolase	Blattella germanica	Blattella
1YI9_A	81-126	Oxidoreductase	Rattus norvegicus	Rattus
1YS1_A	190-270	Hydrolase	Burkholderia cepacia	Burkholderia
1ZMI_A	3-18	Antimicrobial	Homo sapiens	Homo
1ZMM_A	4-19	Antimicrobial	Homo sapiens	Homo
2B7U_A	217-254	Hydrolase	Charybdis maritima	Drimia
2B9L_A	69-105	Immune system	Holotrichia diomphalia	Holotrichia
2BB6_A	3-252	Transport protein	Bos taurus	Bos
2BGH_A	25-89	Transferase	Rauvolfia serpentina	Rauvolfia
2C1C_A	138-161	Hydrolase	Helicoverpa zea	Helicoverpa
2CKS_A	166-406	Hydrolase	Thermobifida fusca	Thermobifida
2CMZ_A	68-114	Membrane	Vesicular stomatitis indiana virus	Vesiculovirus
2D5W_A	314-458	Peptide binding	Thermus thermophilus	Thermus
2DDU_A	1475-1522	Signaling	Mus musculus	Mus
2DRE_A	45-92	Plant protein	Lepidium virginicum	Lepidium
2E1V_A	125-433	Transferase	Chrysanthemum x morifolium	Chrysanthemum
2ENG_A	16-86	Hydrolase	Humicola insolens	Humicola
2ENG_A	87-199	Hydrolase	Humicola insolens	Humicola
2ENG_A	89-189	Hydrolase	Humicola insolens	Humicola
2ERF_A	153-214	Sugar	Homo sapiens	Homo
2F5X_A	142-178	Transport protein	Bordetella pertussis tohama I	Bordetella
2FMA_A	144-174	Metal binding	Homo sapiens	Homo
2G5X_A	32-214	Hydrolase	Lychnis chalcedonica	Silene
2GHV_E	366-419	Viral	Sars coronavirus	Betacoronavirus
2GUM ${ }^{\text {a }}$	364-412	Viral protein	Human herpesvirus 1	Simplexvirus
2HCZ_X	42-70	Allergen 2	Zea mays	Zea
2HCZ_X	73-140	Allergen 2	Zea mays	Zea
2IKD_A	23-54	Hydrolase	Manduca sexta	Manduca
2IKE_A	83-113	Hydrolase	Manduca sexta	Manduca
2J6D_A	35-56	Toxin	Conus striatus	Conus
2JD4_A	2845-2870	Metal binding	Mus musculus	Mus
2JD4_A	3024-3055	Metal binding	Mus musculus	Mus
2JIG_A	195-230	Hydrolase	Chlamydomonas reinhardtii	Chlamydomonas
2JKS_A	66-77	Immune system	Toxoplasma gondii	Toxoplasma
Continued on the next page				

Table 2 - continued from the previous page
\(\left.$$
\begin{array}{c||c|c|c|c}\text { PDB } & \text { Loop } & \begin{array}{c}\text { Function } \\
\text { code }\end{array} & \text { range } & \text { Orassification) }\end{array}
$$ \quad \begin{array}{c}Organism

Species\end{array}\right]\)| Organism |
| :---: |
| Genus |

Table 2 - continued from the previous page

PDB code	Loop range	Function (classification)	Organism Species	Organism Genus
2ZK9_A	76-172	Hydrolase	Chryseobacterium proteolyticum	Chryseobacterium
2ZK9_A	77-126	Hydrolase	Chryseobacterium proteolyticum	Chryseobacterium
2ZWS_A	322-370	Hydrolase	Pseudomonas aeruginosa	Pseudomonas
2ZX2_A	106-135	Immune system	Oncorhynchus keta	Oncorhynchus
2ZX2_A	6-35	Immune system	Oncorhynchus keta	Oncorhynchus
3A2E_A	10-86	Plant protein	Ginkgo biloba	Ginkgo
3AIH_A	181-216	Sugar binding	Homo sapiens	Homo
3BRN_A	40-153	Ligand binding	Argas monolakensis	Argas
3BWK_A	177-238	Hydrolase	Plasmodium falciparum	Plasmodium
3CQN_A	118-249	Oxidoreductase	Arabidopsis thaliana	Arabidopsis
3CTK_A	32-212	Hydrolase	Bougainvillea spectabilis	Bougainvillea
3D22_A	4-58	Oxidoreductase	Populus trichocarpa	Populus
3DB5_B	49-124	Transferase	Homo sapiens	Homo
3DJL_A	28-540	Oxidoreductase	Escherichia coli	Escherichia
3DUZ_A	128-158	Viral protein	Autographa cal. nuc. pol. virus	Alphabaculovirus
3EBW_A	41-162	Allergen	Periplaneta americana	Periplaneta
3EDH_A	42-198	Hydrolase	Homo sapiens	Homo
3EDY_A	365-526	Hydrolase	Homo sapiens	Homo
3EQN_A	5-424	Hydrolase	Phanerochaete chrysosporium	Phanerochaete
3F5V_A	4-117	Hydrolase	Dermatophagoides pteronyssinus	Dermatophagoides
3FLP_A	184-215	Sugar binding	Limulus polyphemus	Limulus
3G7N_A	25-254	Hydrolase	Penicillium expansum	Penicillium
3HEI_B	80-140	Transferase	Homo sapiens	Homo
3I26_A	108-156	Hydrolase	Breda virus serotype 1	Torovirus
3I5W_A	5-20	Antimicrobial	Homo sapiens	Homo
3JXG_A	78-261	Cell adhesion	Mus musculus	Mus
3L49_A	166-224	Transport protein	Rhodobacter sphaeroides	Rhodobacter
3L91_A	67-148	Hydrolase	Pseudomonas aeruginosa	Pseudomonas
3LQB_A	50-199	Hydrolase	Danio rerio	Danio
3M31_A	90-349	Oxidoreductase	Saccharomyces cerevisiae	Saccharomyces
3MB5_A	196-233	Transferase	Pyrococcus abyssi	Pyrococcus
3MTW_A	172-213	Hydrolase	Caulobacter vibrioides	Caulobacter
3NGG_A	10-35	Antibiotic	Oxyuranus microlepidotus	Oxyuranus
3NGW_A	24-192	Biosynthetic protein	Archaeoglobus fulgidus	Archaeoglobus
3NK4_A	251-335	Cell adhesion	Gallus gallus	Gallus
3NKQ_A	148-194	Hydrolase	Mus musculus	Mus
3OEN_A	229-284	Transport protein	Rattus norvegicus	Rattus
3ON9_A	180-317	Viral	Ectromelia virus	Orthopoxvirus
3OP8_A	288-326	Protein	Homo sapiens	Homo
3OZP_A	36-55	Hydrolase	Ostrinia furnacalis	Ostrinia
3PIV_A	4-99	Cytokine	Danio rerio	Danio
3PIW_A	6-101	Cytokine	Danio rerio	Danio
3Q2U_A	75-156	Membrane	Homo sapiens	Homo
3Q31_A	58-219	Lyase	Aspergillus oryzae	Aspergillus
3QDH_A	394-445	Cell adhesion	Actinomyces naeslundii	Actinomyces
3QSD_A	133-199	Hydrolase	Schistosoma mansoni	Schistosoma
3QTE_A	6-20	Antimicrobial	Homo sapiens	Homo
3QVP_A	164-206	Oxidoreductase	Aspergillus niger	Aspergillus
3QW9_A	84-153	Cytokine	Rattus norvegicus	Rattus
Continued on the next page				

Table 2 - continued from the previous page
\(\left.$$
\begin{array}{c||c|c|c|c}\begin{array}{c}\text { PDB } \\
\text { code }\end{array} & \text { Loop } \\
\text { range }\end{array}
$$ \quad $$
\begin{array}{c}\text { Function } \\
\text { (classification) }\end{array}
$$ \quad \begin{array}{c}Organism

Species\end{array}\right]\)| Organism |
| :---: |
| Genus |

Table 2 - continued from the previous page

PDB code	Loop range	Function (classification)	Organism Species	Organism Genus
4H14_A	21-165	Viral	Bovine coronavirus	Betacoronavirus
4HJ1_A	756-852	Viral	Rift valley fever virus	Phlebovirus
4HJ1_A	777-825	Viral	Rift valley fever virus	Phlebovirus
4HLN_A	126-506	Transferase	Hordeum vulgare	Hordeum
4HS9_A	181-238	Hydrolase	Proteus mirabilis	Proteus
4HYQ_A	152-199	Hydrolase	Streptomyces albidoflavus	Streptomyces
4I71_A	199-304	Hydrolase	Trypanosoma brucei brucei	Trypanosoma
4IGT_A	739-794	Membrane protein	Rattus norvegicus	Rattus
4IHZ_A	33-80	Hydrolase	Crataeva tapia	Crateva
4IO2_A	193-247	Membrane	Adineta vaga	Adineta
4J37_A	142-196	Rna binding protein	Homo sapiens	Homo
4JD0_A	32-241	Transferase	Thermotoga maritima	Thermotoga
4JJO_A	23-48	Sugar binding	Clavibacter michiganensis	Clavibacter
4JP6_A	29-61	Unknown	Carica papaya	Carica
4JP6_A	64-120	Unknown	Carica papaya	Carica
4JPH_A	87-137	Cytokine	Mus musculus	Mus
4JWO_A	154-263	Phosphate binding	Planctomyces limnophilus	Planctopirus
4KK7_A	150-345	Protein binding	Mycobacterium tuberculosis	Mycobacterium
4KKI_A	3-242	Transport protein	Homo sapiens	Homo
4KNC_A	44-229	Sugar binding	Pseudomonas aeruginos	Pseudomonas aeruginosa
4KP1_A	102-365	Isomerase	Methanocaldococcus jannaschii	Methanocaldococcus
4KYP_A	69	Toxin	Hottentotta judaicus	Hottentotta
4L05_A	55-150	Oxidoreductase	Brucella abortus	Brucella
4L3N_A	425-478	Viral	man betacoronavirus 2c	Betacoronavirus
4L7G_A	217-382	Hydrolase	Homo sapiens	Homo
4LB1_A	4-19	Antimicrobial	Homo sapiens	Homo
4LBF_A	4-19	Antimicrobial protein	Homo sapiens	Homo
4LQ6_A	33-81	Hydrolase	Mycobacterium tuberculosis	Mycobacterium
4MYK_A	35-242	Hydrolase	Trypanosoma cruzi	Trypanosoma
4N03_A	89-347	Transport protein	Thermomonospora curvata	Thermomonospora
4N3T_A	87-162	Oxidoreductase	Candida albicans	Candida
4N7C_A	44-175	Protein binding	Blattella germanica	Blattella
4NT5_A	2739-2788	Protein binding	Homo sapiens	Homo
4OIE_A	280-329	Viral	West nile virus	Flavivirus
4OIE_A	291-312	Viral	West nile virus	Flavivirus
4P02_B	163-430	Transferase	Rhodobacter sphaeroides	
4P27_A	56-130	Allergen	Schistosoma mansoni	Schistosoma
4PLM_A	121-154	Protein binding	Gallus gallus	Gallus
4R2B_A	290-357	Transport	chrobactrum anthropi	Ochrobactrum
4TLP_A	44-88	Hydrolase	Psophocarpus tetragonolobus	Psophocarpus

Table 2: Protein chains with a single lasso (L_{1} type), i.e. with loops pierced once by a tail. In total 331 loops pierced once have been identified in 296 proteins.

PDB code	Loop range	Function (classification)	Organism Species	Organism Genus
1AOC_A	10-95	Coagulation factor	Tachypleus tridentatus	Tachypleus
1BR9_A	1-72	Proteinase	Homo sapiens	Homo
1ETE_A	93-132	Cytokine	Homo sapiens	Homo
1F2L_A	8-34	Cytokine	Homo sapiens	Homo
1G0Y_R	104-147	Immune system	Homo sapiens	Homo
1GVZ_A	22-157	Hydrolase	Equus caballus	Equus
1HC1_A	562-609	Oxygen transport	Panulirus interruptus	Panulirus
1KKH_A	112-286	Transferase	Methanocaldococcus jannaschii	Methanocaldococcus
1M8A_A	6-32	Cytokine	Homo sapiens	Homo
1NR4_A	10-34	Cytokine	Homo sapiens	Homo
107Z_A	9-36	Chemokine	Homo sapiens	Homo
1OMZ_A	244-296	Transferase	Mus musculus	Mus
1QFX_A	109-453	Hydrolase	Aspergillus niger	Aspergillus
1RJT_A	9-36	Cytokine	Homo sapiens	Homo
1TVX_A	25-51	Cytokine	Homo sapiens	Homo
1XWE_A	1514-1588	Signaling	Homo sapiens	Homo
1YPY_A	49-136	Viral protein	Vaccinia virus	Orthopoxvirus
1ZPU_A	102-521	Oxidoreductase	Saccharomyces cerevisiae	Saccharomyces
1ZXT_A	12-36	Signaling	Human herpesvirus 8	Rhadinovirus
2FFU_A	345-423	Transferase	Homo sapiens	Homo
2GMF_A	88-121	Growth factor	Homo sapiens	Homo
2HDL_A	3-29	Cytokine	Homo sapiens	Homo
2LT5_C	3-78	Hydrolase	Rana pipiens	Rana
2OIZ_D	81-113	Oxidoreductase	Alcaligenes faecalis	Alcaligenes
2P3X_A	25-88	Oxidoreductase	Vitis vinifera	Vitis
2Q9O_A	114-540	Oxidoreductase	Melanocarpus albomyces	Melanocarpus
2RA4_A	-35	Cytokine	Homo sapiens	Homo
2VGA_A	6-166	Viral	Vaccinia virus	Orthopoxvirus
2X97_C	467-612	Hydrolase	Drosophila melanogaster	Drosophila
2YAU_A	89-213	Oxidoreductase	Leishmania infantum	Leishmania
3F95_A	768-811	Hydrolase	Pseudoalteromonas sp.	Pseudoalteromonas
3GV3_A	9-34	Cytokine	Homo sapiens	Homo
3HHS_A	586-630	Oxidoreductase	Manduca sexta	Manduca
3HHS_A	588-637	Oxidoreductase	Manduca sexta	Manduca
3NKQ_A	156-350	Hydrolase	Mus musculus	Mus
3NSW_C	3-62	Immune system	Ancylostoma ceylanicum	Ancylostoma
3PXL_A	85-488	Oxidoreductase	Trametes hirsuta	Trametes
3RT4_A	22-67	Immune system	Camelus dromedarius	Camelus
3SQR_A	108-524	Oxidoreductase	Botrytis aclada	Botrytis
3TM0_A	19-156	Transferase/antibiotic	Enterococcus faecalis	Enterococcus
3TN2_A	11-35	Cytokine	Homo sapiens	Homo
3ZK4_A	203-367	Oxidoreductase	Lupinus luteus	Lupinus
4ADI_A	37-242	Viral protein	Rubella virus	Rubivirus
4HCS_A	15-40	Signaling	Danio rerio	Danio
4HWM_A	68-124	Unknown	Klebsiella pneumoniae	Klebsiella
4N1I_A	10-278	Hydrolase	Ustilago maydis	Ustilago
4PSC_A	55-91	Hydrolase	Trichoderma reesei	Trichoderma

Table 3: Protein chains with a double lasso (L_{2} type), i.e. with loops pierced twice by a tail. In total 47 loops pierced twice have been identified in 46 proteins.

PDB code	Loop range	Function (classification)	Organism Species	Organism Genus
1BJ7_A	$63-154$	Allergen	Bos taurus	Bos
1DZK_A	$63-155$	Transport	Sus scrofa	Sus
1EPA_A	$60-154$	Retinoic	Rattus norvegicus	Rattus
1KT6_A	$70-174$	Transport	Bos taurus	Bos
1LF7_A	$76-168$	Immune	Homo sapiens	Homo
1U3D_A	$80-190$	Signaling	Arabidopsis thaliana	Arabidopsis
2EHG_A	$58-145$	Hydrolase	Sulfolobus tokodaii	Sulfolobus
2L5P_A	$98-203$	Transport	Rattus norvegicus	Rattus
2RA6_A	$73-166$	Transport	Trichosurus vulpecula	Trichosurus
2VGA_A	$112-152$	Viral	Vaccinia virus	Orthopoxvirus
2YG2_A	$95-183$	Lipid transport	Homo sapiens	Homo
3AGN_A	$1-54$	Hydrolase	Ustilago sphaerogena	Ustilago
3EEQ_A	$60-285$	Structural	Sulfolobus solfataricus	Sulfolobus
3FIQ_A	$63-155$	Transport	Rattus norvegicus	Rattus
3KFF_A	$64-157$	Transport	Mus musculus	Mus
3KQ0_A	$72-165$	Signaling	Homo sapiens	Homo
3L4R_A	$64-157$	Allergen,	Canis familiaris	Canis
3NSJ_A	$241-407$	Immune	Mus musculus	Mus
3O22_A	$89-186$	Isomerase	Homo sapiens	Homo
3QL6_A	$6-167$	Oxidoreductase	Bos taurus	Bos
3S26_A	$78-177$	Transport	Mus musculus	Mus
3SAO_A	$58-151$	Transport	Gallus gallus	Gallus
4CK4_A	$66-160$	Transport	Ovis aries	Ovis
4H14_A	$172-252$	Viral	Bovine coronavirus	Betacoronavirus
4ODD_B	$62-154$	Allergen	Canis lupus familiaris	Canis

Table 4: Protein chains with a triple lasso (L_{3} type), i.e. with loops pierced three times by a tail. In total 25 loops triply pierced have been identified in 25 proteins.

PDB code	Loop range	Function (classification)	Organism Species	Organism Genus
4QI7_A	$167-211$	Oxidoreductase	Neurospora crassa	Neurospora

Table 5: Protein chains with a sixfold lasso (L_{6} type), i.e. with loops pierced six times by a tail. In total 1 loop pierced six times has been identified in 1 protein.

PDB code	Loop range	Function (classification)	Organism Species	Organism Genus	Type
2D1G_A	$216-269$	Hydrolase	Francisella tularensis subsp. novicida	Francisella	
2DVZ_A	$93-152$	Transport protein	Bordetella pertussis	Bordetella	
2YHG_A	$564-779$	Hydrolase	Saccharophagus degradans	Saccharophagus	
3OM0_A	$17-273$	Membrane	Rattus norvegicus	Rattus	$L_{1,1}$
3WA1_A	$67-161$	Toxin	Lysinibacillus sphaericus	Lysinibacillus	
4A3X_C	$78-119$	Cell adhesion	Candida glabrata	Nakaseomyces	
4ASL_A	$78-119$	Cell adhesion	Candida glabrata	Nakaseomyces	
2CMZ_A	$177-224$	Membrane protein	Vesicular stomatitis indiana virus	Vesiculovirus	
4JGL_A	$57-142$	Structural protein	Bacteroides eggerthii	Bacteroides	$L_{1,2}$
1CQ3_A	$132-171$	Cytokine	Cowpox virus	Orthopoxvirus	$L_{4,2}$

Table 6: Protein chains with a two-sided lasso ($L_{i, j}$ type), i.e. with loops pierced by both tails, respectively i and j times. In total $\mathbf{1 0}$ two-sided lassos have been identified in $\mathbf{1 0}$ proteins.

PDB code	Loop range	Function (classification)	Organism Species	Organism Genus
1H30_A	$283-570$	Growth arrest spec.	Homo sapiens	Homo
1ZD0_A	$48-131$	Structural	Pyrococcus furiosus	Pyrococcus
2JH1_A	$91-127$	Cell adhesion	Toxoplasma gondii	Toxoplasma
2JH1_A	$181-226$	Cell adhesion	Toxoplasma gondii	Toxoplasma
2XJP_A	$29-175$	Cell adhesion	Saccharomyces cerevisiae	Saccharomyces
2XJP_A	$176-263$	Cell adhesion	Saccharomyces cerevisiae	Saccharomyces
2ZOU_A	$44-128$	Cell adhesion	Homo sapiens	Homo
3IAI_A	$23-203$	Lyase	Homo sapiens	Homo
3V5A_D	$481-675$	Metal binding protein	Bos taurus	Bos
3V83_C	$474-665$	Metal binding protein	Homo sapiens	Homo
3V83_C	$137-331$	Metal binding protein	Homo sapiens	Homo
4A3X_C	$50-179$	Cell adhesion	Candida glabrata	Nakaseomyces
4A3X_C	$180-262$	Cell adhesion	Candida glabrata	Nakaseomyces
4ASL_A	$50-179$	Cell adhesion	Candida glabrata	Nakaseomyces
4ASL_A	$180-262$	Cell adhesion	Candida glabrata	Nakaseomyces
4G7A_A	$24-178$	Lyase	Sulfurihydrogenibium sp. yo3aop1	Sulfurihydrogenibium
4HT2_A	$22-202$	Lyase	Homo sapiens	Homo
4KG7_A	$54-123$	Hydrolase	Mycobacterium smegmatis	Mycobacterium
4P1E_A	$185-304$	Transport	Escherichia fergusonii	Escherichia

Table 7: Protein chains with a supercoiling lasso ($L S$ type), i.e. with loops pierced several times by one tail from the same direction. In total 19 supercoiled loops have been identified, in 14 proteins.

$\begin{aligned} & \text { PDB } \\ & \text { code } \end{aligned}$	Loop range	Lasso type	Function (classification)	Organism Species	Organism Genus	$\begin{aligned} & \text { Chain } \\ & \text { type } \end{aligned}$
1C01_A	11-64	L_{1} L_{1}	Antimicrobial	Macadamia integrifolia	Macadamia	$L_{1} L_{1}$
1E4M_M	$\begin{gathered} 6-438 \\ 14-434 \end{gathered}$	L_{1} L_{1} 	Hydrolase	Sinapis alba	Sinapis	$L_{1} L_{1}$
1FLC_A	$\begin{aligned} & 126-174 \\ & 196-238 \end{aligned}$	L_{1} L_{1} 	Hydrolase	Influenza C virus	Influenzavirus C	$L_{1} L_{1}$
1HCN_B	$\begin{gathered} 23-72 \\ 26-110 \end{gathered}$	L_{1} L_{1} 	Hormone	Homo sapiens	Homo	$L_{1} L_{1}$
1JY5_A	$\begin{aligned} & 26-84 \\ & 57-90 \end{aligned}$	L_{1} L_{1}	Hydrolase	Calystegia sepium	Calystegia	$L_{1} L_{1}$
1LKI_A	$\begin{aligned} & 12-134 \\ & 18-131 \end{aligned}$	L_{1} L_{1} 	Cytokine	Mus musculus	Mus	$L_{1} L_{1}$
1Q25_A	$\begin{gathered} 81-111 \\ 385-419 \end{gathered}$	L_{1} L_{1}	Protein binding	Bos taurus	Bos	$L_{1} L_{1}$
1SGL_A	26-84 $57-90$	L_{1} L_{1} 	Hydrolase	Trichosanthes lepiniana	Trichosanthes	$L_{1} L_{1}$
1T61_A	$\begin{gathered} 53-108 \\ 164-222 \end{gathered}$	L_{1} L_{1}	Structural protein	Bos taurus	Bos	$L_{1} L_{1}$
1UDK_A	$\begin{gathered} 7-37 \\ 20-41 \end{gathered}$	L_{1} L_{1}	Unknown	Naja nigricollis	Naja	$L_{1} L_{1}$
1WKT_A	$11-72$ $27-58$	L_{1} L_{1}	Toxin	Williopsis saturnus var. mrakii	Cyberlindnera	$L_{1} L_{1}$
2HCZ_X	$\begin{gathered} 42-70 \\ 73-140 \end{gathered}$	$\begin{aligned} & L_{1} \\ & L_{1} \end{aligned}$	Allergen 2	Zea mays	Zea	$L_{1} L_{1}$
2JTO_A	$\begin{aligned} & 10-27 \\ & 47-64 \end{aligned}$	L_{1} L_{1}	Hydrolase	Rhipicephalus bursa	Rhipicephalus	$L_{1} L_{1}$
2KQA_A	$\begin{gathered} 20-57 \\ 60-115 \end{gathered}$	L_{1} L_{1} 	Toxin	Ceratocystis platani	Ceratocystis	$L_{1} L_{1}$
2PSP_A	$\begin{gathered} 8-35 \\ 58-84 \end{gathered}$	L_{1} L_{1} 	Signaling	Sus scrofa	Sus	$L_{1} L_{1}$
2UUX_A	$\begin{aligned} & 24-51 \\ & 52-69 \end{aligned}$	L_{1} L_{1}	Inhibitor	Rhipicephalus appendiculatus	Rhipicephalus	$L_{1} L_{1}$
2ZK9_X	$\begin{aligned} & 76-172 \\ & 77-126 \end{aligned}$	L_{1} L_{1}	Hydrolase	Chryseobacterium proteolyticum	Chryseobacterium	$L_{1} L_{1}$
2ZX2_A	$\begin{gathered} 6-35 \\ 106-135 \end{gathered}$	$\begin{aligned} & L_{1} \\ & L_{1} \end{aligned}$	Immune system	Oncorhynchus keta	Oncorhynchus	$L_{1} L_{1}$
3SUK_A	$\begin{gathered} 39-76 \\ 79-138 \end{gathered}$	L_{1} L_{1}	Unknown	Moniliophthora perniciosa	Moniliophthora	$L_{1} L_{1}$
3SUM_A	$\begin{gathered} 43-80 \\ 83-145 \end{gathered}$	L_{1} L_{1} 	Unknown	Moniliophthora perniciosa	Moniliophthora	$L_{1} L_{1}$
3U74_A	$\begin{gathered} 95-122 \\ 115-147 \end{gathered}$	$\begin{aligned} & L_{1} \\ & L_{1} \end{aligned}$	Hydrolase receptor	Homo sapiens	Homo	$L_{1} L_{1}$
4CYL_A	$\begin{aligned} & 111-309 \\ & 113-155 \end{aligned}$	$\begin{aligned} & L_{1} \\ & L_{1} \end{aligned}$	Cell adhesion	Caenorhabditis elegans	Caenorhabditis	$L_{1} L_{1}$
4HJ1_A	$\begin{aligned} & 771-965 \\ & 777-825 \end{aligned}$	$\begin{aligned} & L_{1} \\ & L_{1} \end{aligned}$	Viral	Rift valley fever virus	Phlebovirus	$L_{1} L_{1}$
4JP6_A	$\begin{gathered} 29-61 \\ 64-120 \end{gathered}$	$\begin{aligned} & L_{1} \\ & L_{1} \end{aligned}$	Unknown	Carica papaya	Carica	$L_{1} L_{1}$
4OIE_A	$\begin{array}{r} 280-329 \\ 291-312 \\ \hline \end{array}$	$\begin{aligned} & L_{1} \\ & L_{1} \\ & \hline \end{aligned}$	Viral	West nile virus	Flavivirus	$L_{1} L_{1}$

Table 8 - continued from the previous page

PDB code	Loops range	$\begin{array}{\|c\|} \text { Lasso } \\ \text { type } \end{array}$	Function (classification)	Organism Species	Organism Genus	Chain type
1AOC_A	$\begin{gathered} 60-161 \\ 10-95 \end{gathered}$	$\begin{aligned} & L_{1} \\ & L_{2} \end{aligned}$	Coagulation factor	Tachypleus tridentatus	Tachypleus	$L_{1} L_{2}$
1ETE_A	$\begin{aligned} & 44-127 \\ & 93-132 \end{aligned}$	$\begin{aligned} & L_{1} \\ & L_{2} \end{aligned}$	Cytokine	Homo sapiens	Homo	$L_{1} L_{2}$
2OIZ_D	$\begin{gathered} 81-113 \\ 130-161 \end{gathered}$	$\begin{aligned} & L_{2} \\ & L_{1} \end{aligned}$	Oxidoreductase	Alcaligenes faecalis	Alcaligenes	$L_{2} L_{1}$
2Q9O_A	$\begin{aligned} & 114-540 \\ & 298-332 \end{aligned}$	$\begin{aligned} & L_{2} \\ & L_{1} \end{aligned}$	Oxidoreductase	Melanocarpus albomyces	Melanocarpus	$L_{2} L_{1}$
4H14_A	$\begin{gathered} \hline 21-165 \\ 172-252 \end{gathered}$	$\begin{aligned} & \hline L_{1} \\ & L_{3} \end{aligned}$	Viral	Bovine coronavirus	Betacoronavirus	$L_{1} L_{3}$
2CMZ_A	$\begin{gathered} 68-114 \\ 177-224 \end{gathered}$	$\begin{gathered} \hline L L_{1,1} \\ L_{1} \\ \hline \end{gathered}$	Membrane	Vesicular stomatitis indiana virus	Vesiculovirus	$L_{1,1} L_{1}$
1CQ3_A	$\begin{gathered} \hline 8-185 \\ 132-171 \end{gathered}$	$\begin{gathered} L_{1} \\ L_{4,2} \\ \hline \end{gathered}$	Antimicrobial	Macadamia integrifolia	Macadamia	$L_{1} L_{4,2}$
3V5A_N	$\begin{aligned} & 425-647 \\ & 481-675 \end{aligned}$	$\begin{aligned} & L_{1} \\ & L S \end{aligned}$	Metal binding	Bos taurus	Bos	$L_{1} L S$
3HHS_A	$\begin{aligned} & 586-630 \\ & 588-637 \end{aligned}$	$\begin{aligned} & L_{2} \\ & L_{2} \end{aligned}$	Oxidoreductase	Manduca sexta	Manduca	$L_{2} L_{2}$
2JH1_A	$\begin{aligned} & 91-127 \\ & 91-127 \end{aligned}$	$\begin{aligned} & L S \\ & L S \end{aligned}$	Cell adhesion	Toxoplasma gondii	Toxoplasma	LSLS
2XJP_A	$\begin{gathered} 29-175 \\ 176-263 \end{gathered}$	$\begin{aligned} & L S \\ & L S \end{aligned}$	Cell adhesion	Saccharomyces cerevisiae	Saccharomyces	LSLS
	18-62	L_{1}				
1DTV_A	19-43	L_{1}	Antimicrobial	Macadamia integrifolia	Macadamia	$L_{1} L_{1} L_{1}$
	22-58	L_{1}				
	30-69	L_{1}				
1WC2_A	$65-178$	L_{1}	Hydrolase	Mytilus edulis	Mytilus	$L_{1} L_{1} L_{1}$
	$\begin{gathered} 72-157 \\ 16-86 \end{gathered}$	L_{1}				
2ENG_A	$\begin{aligned} & 87-199 \\ & 89-189 \end{aligned}$	$\begin{aligned} & L_{1} \\ & L_{1} \\ & L_{1} \end{aligned}$	Hydrolase	Humicola insolens	Humicola	$L_{1} L_{1} L_{1}$
4ADI_A	$\begin{aligned} & 37-242 \\ & 49-287 \\ & 51-130 \end{aligned}$	$\begin{aligned} & \hline L_{2} \\ & L_{1} \\ & L_{1} \end{aligned}$	Viral	Rubella virus	Rubivirus	$L_{2} L_{1} L_{1}$
2VGA_A	$\begin{gathered} 6-166 \\ 33-199 \\ 112-152 \end{gathered}$	$\begin{aligned} & L_{2} \\ & L_{1} \\ & L_{3} \end{aligned}$	Viral	Vaccinia virus	Orthopoxvirus	$L_{2} L_{1} L_{3}$
3NKQ_A	$\begin{aligned} & 148-194 \\ & 156-350 \\ & 413-801 \end{aligned}$	$\begin{gathered} \hline L_{1} \\ L_{2} \\ L_{1,2} \end{gathered}$	Hydrolase	Mus musculus	Mus	$L_{1} L_{2} L_{1,2}$
1H30_A	$\begin{aligned} & 283-570 \\ & 444-470 \\ & 562-609 \end{aligned}$	$\begin{gathered} \hline, 2 \\ \hline L_{1} \\ L_{1} \end{gathered}$	Growth arrest spec.	Homo sapiens	Homo	$L S L_{1} L_{1}$
2JD4_A	$\begin{array}{\|l\|l\|} \hline 2686-2958 \\ 2845-2870 \\ 3024-3055 \end{array}$	$\begin{aligned} & L S \\ & L_{1} \\ & L_{1} \\ & L_{1} \end{aligned}$	Metal binding	Mus musculus	Mus	$L S L_{1} L_{1}$
4A3X_C	$\begin{gathered} \hline 50-179 \\ 78-119 \\ 180-262 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline L S \\ L S_{1,1} \\ L S \\ \hline \end{array}$	Cell adhesion	Candida glabrata	Nakaseomyces	$L S L L_{1,1} L S$
Continued on the next page						

Table 8 - continued from the previous page

PDB code	Loops range	Lasso type	Function (classification)	Organism Species	Organism Genus	Chain type
	$50-179$	$L S$		Nakaseomyces	$L S L L_{1,1} L S$	
4ASL_A	$78-119$	$L S_{1,1}$	Cell adhesion	Candida glabrata	Nakn	
	$180-262$	$L S$				
	$137-331$	$L S$		Homo	$L S L_{1} L_{1} L S$	
3V83_C	$402-674$	L_{1}	Metal binding	Homo sapiens		
	$418-637$	L_{1}				

Table 8: Protein chains with more than one pierced lasso in structure. In total 16 different loop arrangements have been identified in 47 proteins.

4 Posttranslational modifications

In order to reveal the possible function of the lasso motif the posstranslationally modified amino acids were selected in the set of topologically nontrivial structures. The analysis showed, that in the case of 4 protein chains the modified residue was located inside the pierced covalent loop (Tab. 9).

PDB code	Loop range	Lasso loop type	Index of modified residue	Modified residue code	Modified residue name	Modified residue image
3F5V_A	$4-117$	L_{1}	34	CSD	3-Sulfinoalanine	CSO
2VEC_A	$10-204$	L_{1}	122	S-Hydroxycysteine	CSX	S-Oxy Cysteine

Table 9: The protein chains with posttranslational modifications found inside the pierced covalent loop.

In other 10 chains the modified residue was external to the covalent loop. As such residue can still influence the sequential, or spatial proximity of the piercing, we calculated the sequential distance between the modified residue and the closes piercing (Tab. 10).

PDB code	Index of piercing residue	Index of modified residue	Distance	Modified residue code	Modified residue name
4FDI_A	73	79	6	DDZ	$\begin{gathered} \hline \text { 3,3-Dihydroxy } \\ \text { L-Alanine } \end{gathered}$
2Q9O_A	92	98	6	OHI	$\begin{gathered} 3 \text {-(2-Oxo-2H-Imidazol-4-yl)- } \\ \text {-L-Alanine } \end{gathered}$
3QSD_A	127	324	197	074	[Propylamino-3-Hydroxy--Butan-1,4-Dionyl]--Isoleucyl-Proline
2HCZ_X	58	9	49	HYP	4-Hydroxyproline
1YG9_A	40	289	249	CSX	S-Oxy Cysteins
3QL6_A	179	198	19	SEP	Phosphoserine
2PSP_A	47	1	46	PCA	Pyroglutamic Acid
3KQ0_A	29	1	28	PCA	Pyroglutamic Acid
4GQR_A	63	1	62	PCA	Pyroglutamic Acid
4JP6_A	48	1	47	PCA	Pyroglutamic Acid

Table 10: The protein chains with modified residues, external to the pierced covalent loop. In the table the distance between the modified residue and the sequentially nearest piercing is given.

5 List of multimeric proteins

Multimeric proteins in study, for which at least one chain possess at least one pierced covalent loop (PDB codes with the chain names in parenthesis):
$1 \mathrm{AOC}(\mathrm{A}, \mathrm{B}), 1 \mathrm{AOZ}(\mathrm{A}, \mathrm{B}), 1 \mathrm{BCP}(\mathrm{A}, \mathrm{G}), 1 \mathrm{CQ} 3(\mathrm{~A}, \mathrm{~B}), 1 \mathrm{DEU}(\mathrm{A}, \mathrm{B}), 1 \mathrm{DOF}(\mathrm{A}, \mathrm{C}, \mathrm{B}, \mathrm{D})$, $1 \mathrm{DP} 4(\mathrm{~A}, \mathrm{C}), 1 \mathrm{DZK}(\mathrm{A}, \mathrm{B}), 1 \mathrm{EPA}(\mathrm{A}, \mathrm{B}), 1 \mathrm{ETE}(\mathrm{A}, \mathrm{C}, \mathrm{B}, \mathrm{D}), 1 \mathrm{~F} 2 \mathrm{~L}(\mathrm{~A}, \mathrm{C}, \mathrm{B}, \mathrm{D}), 1 \mathrm{FD} 3$ (A,C,B,D), 1FJR (A,B), 1FLC (A,C,E), 1GXY (A,B), 1HC1 (A, C, B, E, D, F), 1I1J (A, B), $1 \mathrm{I} 4 \mathrm{U}(\mathrm{A}, \mathrm{B}), 1 \mathrm{IJV}(\mathrm{A}, \mathrm{B}), 1 \mathrm{IYB}(\mathrm{A}, \mathrm{B}), 1 \mathrm{JDP}(\mathrm{A}, \mathrm{B}), 1 \mathrm{JY} 5(\mathrm{~A}, \mathrm{~B}), 1 \mathrm{LE} 6(\mathrm{~A}, \mathrm{C}, \mathrm{B}), 1 \mathrm{M} 8 \mathrm{~A}$ (A,B), 1N2Z (A,B), 1NF2 (A,C,B), 1NR4 (A,C,B,E,D,G,F,H), 1NSC (A,B), 1O7Z (A,B), $1 \mathrm{OMZ}(\mathrm{A}, \mathrm{B}), 1 \mathrm{PZ7}(\mathrm{~A}, \mathrm{~B}), 1 \mathrm{Q} 77(\mathrm{~A}, \mathrm{~B}), 1 \mathrm{QFT}(\mathrm{A}, \mathrm{B}), 1 \mathrm{RXD}(\mathrm{C}, \mathrm{B}), 1 \mathrm{SCF}(\mathrm{A}, \mathrm{B}), 1 \mathrm{~T} 61$ (A,C,B,E,D,F), 1TVX (A,C,B,D), 1TZP (A,B), 1UWC (A,B), 1WS8 (A,C,B,D), 1XTA (A,B), 1XTM (A,B), 1YRB (A,B), 1ZMI (A,C,B,D), 1ZMM (A,C,B,D), 1ZPU (A,C,B,E,D,F), 1ZXT (A,C,B,D), 2BB3 (A,B), 2BB6 (A,C,B,D), 2BGH (A,B), 2C1C (A,B), 2CKS $(\mathrm{A}, \mathrm{B}), 2 \mathrm{CMZ}(\mathrm{A}, \mathrm{C}, \mathrm{B}), 2 \mathrm{D} 1 \mathrm{G}(\mathrm{A}, \mathrm{B}), 2 \mathrm{D} 5 \mathrm{~W}(\mathrm{~A}, \mathrm{~B}), 2 \mathrm{DRE}(\mathrm{A}, \mathrm{C}, \mathrm{B}, \mathrm{D}), 2 \mathrm{E} 1 \mathrm{~V}(\mathrm{~A}, \mathrm{~B})$, 2F5X (A,C,B), 2GHV (C,E), 2GMF (A,B), 2GUM (A,C,B), 2HYX (A,C,B,D), 2JD4 (A,B), 2JIG (A,B), 2OIZ (H,D), 2OR7 (A,B), 2OYA (A,B), 2PMV (A, C, B,D), 2PSP (A,B), 2PT5 (A,C,B,D), 2Q9O (A,B), 2QKI (C,F), 2QN4 (A,B), 2RA4 (A,B), 2RA6 (A,C,B,D), 2W8X (A,B), 2W9X (A,B), 2WB9 (A,B), 2WY3 (B,D), 2XRC (A, C, B, D), $2 \mathrm{Y} 8 \mathrm{~T}(\mathrm{~A}, \mathrm{D}), 2 \mathrm{YAU}(\mathrm{A}, \mathrm{B}), 2 \mathrm{YG} 2(\mathrm{~A}, \mathrm{~B}), 2 \mathrm{Z} 4 \mathrm{I}(\mathrm{A}, \mathrm{B}), 2 \mathrm{ZOU}(\mathrm{A}, \mathrm{B}), 2 \mathrm{ZX} 2(\mathrm{~A}, \mathrm{~B}), 3 \mathrm{~A} 2 \mathrm{E}$ (A, D) , 3AIH (A, B) , 3B1B (A,B), 3BRN (A,B), 3BWK (A,B,D), 3CGU (A, B), 3CQN (A, B) , 3EBW ($\mathrm{A}, \mathrm{B}), 3 \mathrm{EEQ}(\mathrm{A}, \mathrm{B}), 3 \mathrm{EQN}(\mathrm{A}, \mathrm{B}), 3 \mathrm{ETO}(\mathrm{A}, \mathrm{B}), 3 \mathrm{~F} 5 \mathrm{~V}(\mathrm{~A}, \mathrm{~B}), 3 \mathrm{~F} 95(\mathrm{~A}, \mathrm{~B})$, 3 FIQ (A,B), 3FLP (A,C,B,E,D,G,F,I,H,K,J,M,L,N), 3FW3 (A,B), 3G7N (A,B), 3HEI (B,D,F,H,J,L,N,P), 3HHS (A,B), 3I26 (A,C,B,D), 3I5W (A,B), 3IAI (A, C, B, D), 3JXG (A,C,B,D), 3KGL (A,C,B,E,D,F), 3L49 (A,C,B,D), 3NGG (A,B), 3NK4 (A,B), 3NSW (C,B,D,G,F), 3ON9 (A,B), 3OP8 (A,B), 3PIM (A,B), 3PIV (A,B), 3Q31 (A,B), 3QTE (A,C,B,D), 3QW9 (A,B), 3RT4 (A,C,B,D), 3S8K (A,B), 3SAO (A,B), 3SUK (A,B), 3SUM (A,C,B,D), 3T94 (A,C,B,E,D,F), 3TC2 (A,C,B), 3U4Y (A,B), 3UTK (A,B), 3UYX (A,B), 3V83 (A,C,B,E,D,F), 3VUP (A,B), 3WKY (A,B), 3ZK4 (A,C,B), 3ZPX (A,B), 3ZXC (A, B), 4A7U (A,F), 4ADI (A, C, B) , 4B7Q (A, C, B, D) , 4BQD (A, B) , 4CK4 (A,B), 4CMR (A,B), 4COF (A,C,B,E,D), 4ETR (A,B), 4F23 (A,C,B), 4FDI (A,B), 4FNK (A,C,E), 4G2U (A,B), 4G7A (A,B), 4GDI (A,C,B,E,D,F), 4GE1 (A,C,B,D), 4GQZ (A,C,B,D), 4GV5 (A,C,B), 4HJ1 (A,C,B,D), 4HT2 (A, C,B,D), 4IHZ (A,B), 4IO2 (A,B), 4JPH (A,C,B,D), 4K3Y (A,C,B,D), 4KNC (A,B), 4KYP (A,C,B,D), 4L3N (A,B), 4LB1 (A,B,E,D), 4LB7 (A,B,E,D), 4LBF (A,C,B,E,D,G,F,H), 4ODD (A,C,B), 4PMK $(\mathrm{A}, \mathrm{B}), 4 \mathrm{R} 2 \mathrm{~B}(\mathrm{~A}, \mathrm{~B})$.

6 Complex lasso classification based on CATH database

Lasso type	All	Mainly Alpha	Mainly Beta	Alpha Beta	Few secondary structures	Not classified
Single, L_{1}	296*	17 1ak0, 1ax8, 1bea 1dof, 1ete, 1gak 1jli, 1le6, 1lki 1mc2, 1n1f, ...	74 1ahl, 1aoc, 1aoz 1ata, 1b8w, 1bds 1c01, 1ccv, 1cq3 1d2s, 1d6b, ...	89 $1 \mathrm{ac} 5,1 \mathrm{aho}, 1 \mathrm{bcp}$ $1 \mathrm{cfe}, 1 \mathrm{cpy}, 1 \mathrm{dp} 4$ $1 \mathrm{dtv}, 1 \mathrm{dys}, 1 \mathrm{e} 4 \mathrm{~m}$ 1esc, 1fd3,...	9 1bf0, $1 \mathrm{~g} 6 \mathrm{x}, 1 \mathrm{kth}$ $1 \mathrm{tap}, 1 \mathrm{udk}, 2 \mathrm{j} 6 \mathrm{~d}$ 2psp, 3ctk, 3ngg	107 1ijv, 1xtm, 1zmi $1 \mathrm{zmm}, 2 \mathrm{bb} 6,2 \mathrm{cmz}$ 2f5x, 2ghv, 2gum 2ikd, 2ike, ...
Double, L_{2}	46*	$\begin{gathered} 3 \\ \text { 1ete, } 2 \mathrm{gmf}, 2 \mathrm{p} 3 \mathrm{x} \end{gathered}$	23 $1 \mathrm{aoc}, 1 \mathrm{br} 9,1 \mathrm{f} 2 \mathrm{l}$ $1 \mathrm{~g} 0 \mathrm{y}, 1 \mathrm{gvz}, 1 \mathrm{hc} 1$ $1 \mathrm{~m} 8 \mathrm{a}, 1 \mathrm{nr} 4,1 \mathrm{o} 7 \mathrm{z}$ $1 \mathrm{rjt}, 1 \mathrm{tvx}, \ldots$	7$1 \mathrm{kkh}, 1 \mathrm{mz}, 1 \mathrm{qfx}$ $2 \mathrm{ch} 9,2 \mathrm{yau}, 3 \mathrm{rt} 4$ 3 tm 0	-	14 1ypy, 2lt5, 2vga $2 \mathrm{x} 97,3 \mathrm{f} 95,3 \mathrm{nkq}$ $3 \mathrm{nsw}, 3 \mathrm{tn} 2,3 \mathrm{zk} 4$ 4adi, 4hcs, ...
Triple, L_{3}	25^{*}	$\begin{gathered} 1 \\ 3 \mathrm{ql} 6 \end{gathered}$	16 1bj7, 1dzk, 1epa 1kt6, 1lf7, 2l5p 2ra6, 2yg2, 3fiq $3 \mathrm{kff}, 3 \mathrm{kq} 0, \ldots$	4 1u3d, 2ehg, 3agn 3eeq	-	$\begin{gathered} 4 \\ 2 \mathrm{vga}, 4 \mathrm{ck} 4,4 \mathrm{~h} 14 \\ 4 \mathrm{odd} \end{gathered}$
$\begin{gathered} \text { Sixfold, } \\ L_{6} \\ \hline \end{gathered}$	1	-	-	-	-	$\begin{gathered} 1 \\ 4 \mathrm{qi} 7 \end{gathered}$
Two-sided, LL	10	-	$\begin{gathered} 1 \\ 1 \mathrm{cq} 3 \end{gathered}$	$\begin{gathered} 1 \\ 3 \mathrm{om} 0 \end{gathered}$	-	8 $2 \mathrm{cmz}, 2 \mathrm{~d} 1 \mathrm{~g}, 2 \mathrm{dvz}$ $2 \mathrm{yhg}, 3 \mathrm{wa} 1,4 \mathrm{a} 3 \mathrm{x}$ 4asl, 4jgl
Supercoiling, $L S$	14	-	$\begin{gathered} 1 \\ 1 \mathrm{~h} 30 \end{gathered}$	$\begin{gathered} 4 \\ \text { 1zd0, 3iai, 3v5a } \\ 3 \mathrm{v} 83 \end{gathered}$	-	9 2jh1, 2xjp, 2zou 4a3x, 4asl, 4g7a 4ht2, 4kg7, 4p1e
Total	$376{ }^{* *}$	$20^{* *}$	110**	$103^{* *}$	9**	$134^{* *}$

Table 11: Classification of complex lasso structures based on CATH data base.

* Few proteins are multidomain proteins, with various CATH classification. For those proteins the CATH number corresponding to the domain in which the piercings occur was chosen.
** 47 proteins posses more than one pierced loop (see Tab. 8 and therefore can be categorized into two lasso classes.

7 Examples of proteins with various lasso structures

Figure 6: Proteins with L_{1} topology consist of mainly beta strands (top row: protein with PDB code 3uyx) and mainly alpha helices (bottom row: protein with PDB code 3piw) based on CATH data base classification. Each row consists of the following panels: Left panel: cartoon representation of a given protein. Middle panel: triangulation of a minimal surface for this protein; the triangulated "soap bubble" surface, spanned on the covalent loop, is pierced once by a tail, through a triangle in blue; two cysteins and a cystein bond are shown in orange. Right panel: baricentric representation of a minimal triangulated surface for the same protein; two cysteins and a cystein bond comprise a part of the boundary and are shown in orange; blue triangle is pierced by a tail.

Figure 7: Protein with L_{2} topology consist of mainly beta strands (top row: protein with PDB code 2oiz) based on CATH data base classification. Left panel: cartoon representation of a given protein. Middle panel: triangulation of a minimal surface for this protein; the triangulated "soap bubble" surface, spanned on the covalent loop, is pierced twice by a tail, through a triangle in blue and green; two cysteins and a cystein bond are shown in orange. Right panel: baricentric representation of a minimal triangulated surface for the same protein; two cysteins and a cystein bond comprise a part of the boundary and are shown in orange; blue and green triangles are pierced by a tail.

Figure 8: Proteins with $L S$ motif. Proteins with $L S$ topology consist of mainly alpha helices (top row: protein with PDB code 1zd0), mainly beta strands (middle row: protein with PDB code 4asl) and mainly beta strands (bottom row: protein with PDB code 2xjp) based on CATH data base classification. Each row consists of the following panels: Left panel: cartoon representation of a given protein. Middle panel: triangulation of a minimal surface for this protein; the triangulated "soap bubble" surface, spanned on the covalent loop, is pierced once by a tail, through triangles in green(top panel) or blue(middle and bottom panels); two cysteins and a cystein bond are shown in orange. Right panel: baricentric representation of a minimal triangulated surface for the same protein; two cysteins and a cystein bond comprise a part of the boundary and are shown in orange; green triangles are pierced by a tail two times in the same direction.

Figure 9: Protein 1cq3 with $L L$ motif. Example of protein with the most complicated $L L$ topology which consist of mainly beta strands (PDB code 2oiz) based on CATH data base classification. Left panel: cartoon representation of a given protein. Middle panel: triangulation of a minimal surface for this protein; the triangulated "soap bubble" surface, spanned on the covalent loop, is pierced four times by the N -terminal tail and three times by the C-terminal through a triangles in blue and green; two cysteins and a cystein bond are shown in orange. Right panel: baricentric representation of a minimal triangulated surface for the same protein; two cysteins and a cystein bond comprise a part of the boundary and are shown in orange; blue and green triangles are pierced by the N-terminal and C-terminal tails.

8 Analysis of proteins with small covalent loops

In the case of mini-proteins (sec. 9) the piercing chain fragment is usually stabilized by bulky residues before and after piercing. Therefore we analyzed all lasso proteins with pierced loop comprising maximally 30 residues and checked if there is any bulky residue (TRP, TYR, PHE, MET, ARG, HIS, LYS, LEU) in the range of 5 residues from piercing. The results are contained in Tab. 12.

PDB code	Loop range	Loop size	Loop type	Piercing residue index	Bulky residues
1B8W_A	16-32	17	L_{1}	38	Arg41
1BDS_A	6-32	27	L_{1}	39	Trp35, His43
1BF0_A	32-53	22	L_{1}	23	Phe20, Phe25
1C01_A	23-49	27	L_{1}	71	Trp69, Phe73
1D6B_A	16-32	17	L_{1}	38	Arg35, Tyr42
1DTV_A	19-43	25	L_{1}	9	Tyr12
1F2L_A	8-34	27	L_{2}	39 50	Arg37, Leu41
1FD3_A	15-30	16	L_{1}	36	Leu32, Lys39
1G6X_A	30-51	22	L_{1}	21	Arg20, Phe23
1IJV_A	12-27	16	L_{1}	33	Lys31, Lys36
1KJ6_A	18-33	16	L_{1}	39	Arg38, Arg42
1KTH_A	30-51	22	L_{1}	21	Lys20, Tyr22
1M4L_A	138-161	24	L_{1}	165	Lys168
1M8A_A	6-32	27	L_{2}	37	Phe39, Leu45
1M8A_A				48	Phe49, Lys52
1NR4_A	10-34	25	L_{2}	39	Arg36, Phr38
1NR4_A				50	Phe47
107Z_A	9-36	28	L_{2}	41	Arg38, Lys46
				53	Arg52, Lys54
1OK0_A	45-73	29	L_{1}	33	Lys34
1RJT_A	9-36	28	L_{2}	41	Lys38, Leu45
1RJT_A	9-36	28	L_{2}	52	Lys49, Leu54
1SHI_A	5-33	29	L_{1}	44	Lys46
1TAP_A	33-55	23	L_{1}	24	Arg23, Tyr25
				56	Leu60
1TVX_A	25-51	27	L_{2}	67	Lys65, Leu68
1UDK_A	20-41	22	L_{1}	44	Phe43
1WQK_A	6-30	25	L_{1}	37	Leu34, Tyr39
1ZMI_A	3-18	16	L_{1}	26	Trp25, Phe27
1ZMM_A	4-19	16	L_{1}	27	Phe26, Tyr28
1ZXT_A	12-36	25	L_{2}	41	Lys38, Leu43
				52	Arg49, Lys57
2HCZ_X	42-70	29	L_{1}	94	Tyr92, Tyr98
2HDL_A	3-29	27	L_{2}	34	Lys32, Lys39
2HDL_A	3-29	27	L_{2}	50	His49, Leu51
2J6D_A	35-56	26	L_{1}	34	Arg33, Tyr35
2JD4_B	2845-2870	26	L_{1}	2699	Tyr2694, Phe2701
2JR3_A	16-32	17	L_{1}	37	Phe36, Arg40
	10-27	18	L_{1}	30	Leu34
2JIO_A	47-64	18	L_{1}	69	Lys66, Lys74
Continued on the next page					

Table 12 - continued from the previous page

PDB code	Loop range	Loop size	Loop type	Piercing residue index	Bulky residues
2KER_A	43-70	28	L_{1}	31	Tyr32
2LVX_A	408-437	30	L_{1}	444	Lys442
2MJK_A	12-28	17	L_{1}	31	Lys29, Leu34
2MN3_A	16-30	15	L_{1}	35	Arg32, Phe39
2PSP_A	8-35	28	L_{1}	47	Trp45, Lys48
	58-84	27	L_{1}	95	Tyr94, Phe96
2RA4_A	11-35	25	L_{2}	40	Lys38, Phe42
				51	Lys48, Lys55
2RNG_A	52-70	19	L_{1}	74	Tyr73, Arg77
2UUX_A	24-51	28	L_{1}	58	Tyr55, Tyr59
	52-69	18	L_{1}	45	Arg44, Ty46
2W8X_A	51-69	19	L_{1}	42	Leu41, His43
2XFD_A	90-101	12	L_{1}	83	Trp85
2ZX2_A	6-35	30	L_{1}	88	Trp87, Lys91
	106-135	30	L_{1}	188	Tyr187, Tyr192
3GV3_A	9-34	26	L_{2}	38	Leu36, Arg41
				50	Arg47, Lys54
3 I 5 W _A	5-20	16	L_{1}	28	Tyr27, Leu29
3NGG_A	10-35	26	L_{1}	41	Lys40, Arg44
3OZP_A	36-55	20	L_{1}	28	Trp27, Trp29
3QTE_A	6-20	15	L_{1}	28	Trp27, Phe29
3TN2_A	11-35	25	L_{2}	40	Phe42
				51	Lys48
4BQD_A	51-72	22	L_{1}	42	Arg41, Phe43
4GV5_A	11-30	20	L_{1}	35	Trp34, Lys38
4HCS_A	15-40	26	L_{2}	44	Lys42, Leu45
				55	Lys54
4JJO_A	23-48	26	L_{1}	65	Arg62
4KYP_A	43-69	27	L_{1}	4	Lys2, Tyr5
4LB1_A	4-19	16	L_{1}	27	Trp26
4LBF_A	4-19	16	L_{1}	27	Trp26, Phe28
4OIE_A	291-312	22	L_{1}	335	Tyr331, Arg336

Table 12: The protein chains with small covalent loops (comprasing maximally 30 residues) with potentially blocking bulky residues. For each piercing the closest bulky residue before and after piercing (if they exist) is given.

9 Mini-proteins

The column entitled "Lasso stabilization amino acids" contains the information, which amino acids occur before, and which after the plug. This information can be directly compared with the crossing position given in the column "Surface piercing bond". It is worth mentioning, that our method in several cases agrees with the experimental results. In case of Xanthomycin, BI-32169 and Sviceucin our method predicts exact position of the surface crossing, which is inside the region determined by experimental data between the closest bulky aminoacids. Only in case of Astexin 1(23) our calculated data differ from the experimental slightly. This implies, that our analysis can predict also the aminoacids stabilizing the topology.

Figure 10: Protein with L_{1} topology or lasso topology identified in mini-protein (PDB code 1 rpb). Left panel: cartoon representation of a given protein. Middle panel: triangulation of a minimal surface for this protein; the triangulated "soap bubble" surface, spanned on the covalent loop, is pierced once by a tail, through a triangle in green; Cys (number one, red boal) and Asp (number 9, pink) and amide bond between them is shown in black. Right panel: baricentric representation of a minimal triangulated surface for the same protein; an amide bond comprise a part of the boundary is shown in black; green triangle is pierced by a tail.

	Peptide	PDB id	Peptide length (aa)	Id of atoms forming bond	Lasso stabilization amino acids ${ }^{a}$	Surface piercing bond ${ }^{a}$
Class I	Aborycin RP71955	1 rpb	21	Cys1-Asp9	2 S-S bridges Cys1-Cys13 Cys7-Cys19	Tyr15-Ala16
Class II	Astexin 1(23)	2lti	23	Gly1-Asp9	Tyr14/Phe15	Glu17-Ser18
	Astexin 1(19) ${ }^{\text {c }}$	2 m 37	19	Gly1-Asp9	Tyr14/Phe15	Tyr14-Phe15
	Astexin 3	2 m 8 f	24	Gly1-Asp9	Tyr15/Trp16	Tyr15-Trp16
	Caulosegnin I	21x6	19	Gly1-Glu8	Arg15/Glu16	Arg15-Glu16
	Microcin J25	1 pp 5	21	Gly1-Glu8	Phe19/Tyr20	Phe19-Tyr20*
	Microcin J25 ${ }^{\text {d }}$	1s7p	21	Gly1-Glu8	-	Phe19-Tyr20*
	Streptomonomicin STM	2mw3	21	Ser1-Asp9	-	Pro14-Ala15
	Caulonodin V	2 mlj	18	Ser1-Glu9	-	Tyr16-Trp17*
	Xanthomonin I	2 mfv	14^{e}	Gly1-Glu7	Ile9/Phe12	Gly10-Gly11
	Xanthomonin II	4nag	16^{e}	Gly1-Glu7	Met9/Ile12	Gly10-Gly11
Class III	BI-32169 The glucagon receptor antagonist	3 njw	19	Gly1-Asp9	$\begin{aligned} & 1 \text { S-S bridge } \\ & \text { Cys6-Cys19/ } \\ & \text { Trp13/Trp17 } \end{aligned}$	Asn14-Thr15
Class IV	Sviceucin	2ls1	20	Cys1-Asp9	2 S-S bridges Cys1-Cys13 Cys7-Cys19/ Trp17	Thr15-Ala16

Table 13: Lasso peptides - all have L1 topology according to our notation.
${ }^{a}$ According to [5]. Stabilization can occur by two bulky amino acids or by the presence of cysteine bonds. In case of bulky amino acids residue after pluging through the loop is in bold character whereas the residue before is not. Residues that have been hypothesized to stabilize the topology, but have not been identified by structural analysis or mutagenesis are in italics. For some proteins data of stabilizing residues are missing.
${ }^{b}$ According to introduced method. Entries which differ with entries in "Lasso stabilization amino acids" column are in bold.
${ }^{c}$ Astexin 1 was produced from the wild type strain and by heterologous expression under a 23 -amino acid form accompanied by truncated forms, among which Astexin 1(19) was characterized.
${ }^{d}$ Microcin J25 protein with PDB id 1s7p has exactly the same amino acid sequence as Microcin J25 with 1pp5 protein, but according to crystal structure the chain of 1pp5 is splited into two separate chains in 1 s 7 p .
${ }^{e}$ Xanthomonins I, II are of lenght 20 amino acids, but the structure deposited in PDB are truncated to the number of residues given in table.

* These intersections are shallow, i.e. they are close to the end of a tail or to the ring (in the distance less or equal 3 aa), so would not be counted as complex lasso in our analysis.

10 Structural alignment of proteins with L_{6} lasso type

The L_{6} lasso protein (cellobiose dehydrogenase) with PDB code 4qi7 is a two domain protein with only one homolog (PDB code 4qi6). One of the bridge forming cysteines is located in the linker joining two domains. This part is missing in the homolog, causing its trivial lasso type. Both structures (lasso containing domain with linker) are aligned in the Fig 11.

Figure 11: Structural alignment of cellobiose dehydrogenase with L_{6} lasso type (blue structure, PDB code 4qi7) with its homolog (red structure, PDB code 4qi6). The covalent loop closing bridge is depicted as orange stripe. The missing fragment is denoted as a dashed line. To facilitate view, only one of two domains in each proteins is displayed.

References

[1] Chen W, Cai Y, Zheng J (2008) Constructing triangular meshes of minimal area. Computer-Aided Design and Applications 5 508-518.
[2] Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004) UCSF Chimera - A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 25(13):1605-1612
[3] William T. Tutte, W.T. (1963) How to draw a graph. Proc. London Math. Society 13(52):743-768
[4] Jamroz M, Niemyska W, Rawdon EJ, Stasiak A, Millett KC, Sulkowski P, Sulkowska JI (2014) KnotProt: a database of proteins with knots and slipknots. Nucl. Acids Res. D306-D314
[5] Li Y, Zirah S, Rebuffat S (2015) Lasso Peptides. Bacterial Strategies to Make and Maintain Bioactive Entangled Scaffolds. SpringerBriefs in Microbiology

