283 research outputs found

    The Carina Flare: What can fragments in the wall tell us?

    Get PDF
    13^{13}CO(J=2--1) and C18^{18}O(J=2--1) observations of the molecular cloud G285.90+4.53 (Cloud~16) in the Carina Flare supershell (GSH287+04-17) with the APEX telescope are presented. With an algorithm DENDROFIND we identify 51 fragments and compute their sizes and masses. We discuss their mass spectrum and interpret it as being the result of the shell fragmentation process described by the pressure assisted gravitational instability - PAGI. We conclude that the explanation of the clump mass function needs a combination of gravity with pressure external to the shell.Comment: 19 pages, 14 figures, accepted by A&

    Effects of methimazole on the elimination of irinotecan

    Get PDF
    Purpose: To study the possible pharmacokinetic and pharmacodynamic interactions between irinotecan and methimazole. Methods: A patient treated for colorectal cancer with single agent irinotecan received methimazole co-medication for Graves' disease. Irinotecan pharmacokinetics and side effects were followed during a total of four courses (two courses with and two courses without methimazole). Results: Plasma concentrations of the active irinotecan metabolite SN-38 and its inactive metabolite SN-38-Glucuronide were both higher (a mean increase of 14 and 67%, respectively) with methimazole co-medication, compared to irinotecan monotherapy. As a result, the mean SN-38 glucuronidation rate increased with 47% during concurrent treatment. Other possible confounding factors did not change over time. Specific adverse events due to methimazole co-treatment were not seen. Conclusions: Additional in vitro experiments suggest that these results can be explained by induction of UGT1A1 by methimazole, leading to higher SN-38G concentrations. The prescribed combination of these drugs may lead to highly toxic intestinal SN-38 levels. We therefore advise physicians to be very careful in combining methimazole with regular irinotecan doses, especially in patients who are prone to irinotecan toxicity

    The detection and isolation of a paralysis toxin present in Argas (Persicargas) walkerae

    Get PDF
    One-day-old leghorn chickens were used in a laboratory assay to determine the toxicity of crude extracts of the tick Argas (Persicargas) walkerae and of fractions obtained during the isolation procedure. Extracts of unfed and engorged larvae, nymphae and females were tested using this in vivo test system. Only extracts of replete A. (P.) walkerae larvae produced paralysis. A toxic fraction was isolated from replete larval extracts by gel-permeation and ion-exchange chromatography. This fraction with a pI of 4,5 showed 2 major bands corresponding to a Mᵣ of 32 kDa and 60 kDa after SDS-polyacrylamide gel electrophoresis.The articles have been scanned in colour with a HP Scanjet 5590; 600dpi. Adobe Acrobat XI Pro was used to OCR the text and also for the merging and conversion to the final presentation PDF-format.mn201

    A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics

    Get PDF
    BACKGROUND: Dynamic modeling of metabolic reaction networks under in vivo conditions is a crucial step in order to obtain a better understanding of the (dis)functioning of living cells. So far dynamic metabolic models generally have been based on mechanistic rate equations which often contain so many parameters that their identifiability from experimental data forms a serious problem. Recently, approximative rate equations, based on the linear logarithmic (linlog) format have been proposed as a suitable alternative with fewer parameters. RESULTS: In this paper we present a method for estimation of the kinetic model parameters, which are equal to the elasticities defined in Metabolic Control Analysis, from metabolite data obtained from dynamic as well as steady state perturbations, using the linlog kinetic format. Additionally, we address the question of parameter identifiability from dynamic perturbation data in the presence of noise. The method is illustrated using metabolite data generated with a dynamic model of the glycolytic pathway of Saccharomyces cerevisiae based on mechanistic rate equations. Elasticities are estimated from the generated data, which define the complete linlog kinetic model of the glycolysis. The effect of data noise on the accuracy of the estimated elasticities is presented. Finally, identifiable subset of parameters is determined using information on the standard deviations of the estimated elasticities through Monte Carlo (MC) simulations. CONCLUSION: The parameter estimation within the linlog kinetic framework as presented here allows the determination of the elasticities directly from experimental data from typical dynamic and/or steady state experiments. These elasticities allow the reconstruction of the full kinetic model of Saccharomyces cerevisiae, and the determination of the control coefficients. MC simulations revealed that certain elasticities are potentially unidentifiable from dynamic data only. Addition of steady state perturbation of enzyme activities solved this problem

    Distribution of Cardioembolic Stroke:A Cohort Study

    Get PDF
    Background: A cardiac origin in ischemic stroke is more frequent than previously assumed, but it is not clear which patients benefit from cardiac work-up if obvious cardiac pathology is absent. We hypothesized that thromboembolic stroke with a cardiac source occurs more frequently in the posterior circulation compared with thromboembolic stroke of another etiology. Methods: We performed a multicenter observational study in 3,311 consecutive patients with ischemic stroke who were enrolled in an ongoing prospective stroke registry of 8 University hospitals between September 2009 and November 2014 in The Netherlands. In this initiative, the so-called Parelsnoer Institute-Cerebrovascular Accident Study Group, clinical data, imaging, and biomaterials of patients with stroke are prospectively and uniformly collected. We compared the proportions of posterior stroke location in patients with a cardiac stroke source with those with another stroke etiology and calculated risk ratios (RR) with corresponding 95% CI with Poisson regression analyses. To assess which patient or disease characteristics were most strongly associated with a cardiac etiology in patients with ischemic stroke, we performed a stepwise backward regression analysis. Results: For the primary aim, 1,428 patients were eligible for analyses. The proportion of patients with a posterior stroke location among patients with a cardiac origin of their stroke (28%) did not differ statistically significant to those with another origin (25%), age and sex adjusted RR 1.16; 95% CI 0.96-1.41. For the secondary aim, 1,955 patients were eligible for analyses. No recent history of smoking, no hyperlipidemia, coronary artery disease, a higher age, and a higher National Institutes of Health Stroke Scale (NIHSS) score were associated with a cardiac etiology of ischemic stroke. Conclusions: We could not confirm our hypothesis that thromboembolic stroke localized in the posterior circulation is associated with a cardioembolic source of ischemic stroke, and therefore posterior stroke localization on itself does not necessitate additional cardiac examination. The lack of determinants of atherosclerosis, for example, no recent history of smoking and no hyperlipidemia, coronary artery disease, a higher age, and a higher NIHSS score are stronger risk factors for a cardiac source of ischemic stroke

    Modelling Herschel observations of hot molecular gas emission from embedded low-mass protostars

    Full text link
    Aims. Young stars interact vigorously with their surroundings, as evident from the highly rotationally excited CO (up to Eup=4000 K) and H2O emission (up to 600 K) detected by the Herschel Space Observatory in embedded low-mass protostars. Our aim is to construct a model that reproduces the observations quantitatively, to investigate the origin of the emission, and to use the lines as probes of the various heating mechanisms. Methods. The model consists of a spherical envelope with a bipolar outflow cavity. Three heating mechanisms are considered: passive heating by the protostellar luminosity, UV irradiation of the outflow cavity walls, and C-type shocks along the cavity walls. Line fluxes are calculated for CO and H2O and compared to Herschel data and complementary ground-based data for the protostars NGC1333 IRAS2A, HH 46 and DK Cha. The three sources are selected to span a range of evolutionary phases and physical characteristics. Results. The passively heated gas in the envelope accounts for 3-10% of the CO luminosity summed over all rotational lines up to J=40-39; it is best probed by low-J CO isotopologue lines such as C18O 2-1 and 3-2. The UV-heated gas and the C-type shocks, probed by 12CO 10-9 and higher-J lines, contribute 20-80% each. The model fits show a tentative evolutionary trend: the CO emission is dominated by shocks in the youngest source and by UV-heated gas in the oldest one. This trend is mainly driven by the lower envelope density in more evolved sources. The total H2O line luminosity in all cases is dominated by shocks (>99%). The exact percentages for both species are uncertain by at least a factor of 2 due to uncertainties in the gas temperature as function of the incident UV flux. However, on a qualitative level, both UV-heated gas and C-type shocks are needed to reproduce the emission in far-infrared rotational lines of CO and H2O.Comment: 15 pages (+4 pages appendix), 20 figures, accepted by A&

    High-Resolution Rotation Curves and Galaxy Mass Models from THINGS

    Full text link
    We present rotation curves of 19 galaxies from THINGS, The HI Nearby Galaxy Survey. The high spatial and velocity resolution of THINGS make these the highest quality HI rotation curves available to date for a large sample of nearby galaxies, spanning a wide range of HI masses and luminosities. The high quality of the data allows us to derive the geometrical and dynamical parameters using HI data alone. We do not find any declining rotation curves unambiguously associated with a cut-off in the mass distribution out to the last measured point. The rotation curves are combined with 3.6 um data from SINGS (Spitzer Infrared Nearby Galaxies Survey) to construct mass models. Our best-fit, dynamical disk masses, derived from the rotation curves, are in good agreement with photometric disk masses derived from the 3.6 um images in combination with stellar population synthesis arguments and two different assumptions for the stellar Initial Mass Function (IMF). We test the Cold Dark Matter-motivated cusp model, and the observationally motivated central density core model and find that (independent of IMF) for massive, disk-dominated galaxies, all halo models fit apparently equally well; for low-mass galaxies, however, a core-dominated halo is clearly preferred over a cuspy halo. The empirically derived densities of the dark matter halos of the late-type galaxies in our sample are half of what is predicted by CDM simulations, again independent of the assumed IMF.Comment: Accepted for publication in the AJ special THINGS issue. For a high-resolution version visit: http://www.mpia.de/THINGS/Publications.html [v2 typo fixed

    Magnesium treatment for patients with refractory status epilepticus due to POLG1-mutations

    Get PDF
    Mutations in the gene encoding of the catalytic subunit of mtDNA polymerase gamma (POLG1) can cause typical Alpers' syndrome. Recently, a new POLG1 mutation phenotype was described, the so-called juvenile-onset Alpers' syndrome. This POLG1 mutation phenotype is characterized by refractory epilepsy with recurrent status epilepticus and episodes of epilepsia partialis continua, which often necessitate admission to the intensive care unit (ICU) and pose an important mortality risk. We describe two previously healthy unrelated teenage girls, who both were admitted with generalized tonic-clonic seizures and visual symptoms leading to a DNA-supported diagnosis of juvenile-onset Alpers' syndrome. Despite combined treatment with anti-epileptic drugs, both patients developed status epilepticus requiring admission to the ICU. Intravenous magnesium as anti-convulsant therapy was initiated, resulting in clinical and neurophysiological improvement and rapid extubation of both patients. Treating status epilepticus in juvenile-onset Alpers' syndrome with magnesium has not been described previously. Given the difficulties encountered while treating epilepsy in patients with this syndrome, magnesium therapy might be considered

    Whole body composition analysis by the BodPod air-displacement plethysmography method in children with phenylketonuria shows a higher body fat percentage

    Get PDF
    BACKGROUND: Phenylketonuria (PKU) causes irreversible central nervous system damage unless a phenylalanine (PHE) restricted diet with amino acid supplementation is maintained. To prevent growth retardation, a protein/amino acid intake beyond the recommended dietary protein allowance is mandatory. However, data regarding disease and/or diet related changes in body composition are inconclusive and retarded growth and/or adiposity is still reported. The BodPod whole body air-displacement plethysmography method is a fast, safe and accurate technique to measure body composition. AIM: To gain more insight into the body composition of children with PKU. METHODS: Patients diagnosed with PKU born between 1991 and 2001 were included. Patients were identified by neonatal screening and treated in our centre. Body composition was measured using the BodPod system (Life Measurement Incorporation©). Blood PHE values determined every 1–3 months in the year preceding BodPod analysis were collected. Patients were matched for gender and age with data of healthy control subjects. Independent samples t tests, Mann–Whitney and linear regression were used for statistical analysis. RESULTS: The mean body fat percentage in patients with PKU (n = 20) was significantly higher compared to healthy controls (n = 20) (25.2% vs 18.4%; p = 0.002), especially in girls above 11 years of age (30.1% vs 21.5%; p = 0.027). Body fat percentage increased with rising body weight in patients with PKU only (R = 0.693, p = 0.001), but did not correlate with mean blood PHE level (R = 0.079, p = 0.740). CONCLUSION: Our data show a higher body fat percentage in patients with PKU, especially in girls above 11 years of age
    corecore