30 research outputs found

    An Antiviral Response Directed by PKR Phosphorylation of the RNA Helicase A

    Get PDF
    The double-stranded RNA-activated protein kinase R (PKR) is a key regulator of the innate immune response. Activation of PKR during viral infection culminates in phosphorylation of the α subunit of the eukaryotic translation initiation factor 2 (eIF2α) to inhibit protein translation. A broad range of regulatory functions has also been attributed to PKR. However, as few additional PKR substrates have been identified, the mechanisms remain unclear. Here, PKR is shown to interact with an essential RNA helicase, RHA. Moreover, RHA is identified as a substrate for PKR, with phosphorylation perturbing the association of the helicase with double-stranded RNA (dsRNA). Through this mechanism, PKR can modulate transcription, as revealed by its ability to prevent the capacity of RHA to catalyze transactivating response (TAR)–mediated type 1 human immunodeficiency virus (HIV-1) gene regulation. Consequently, HIV-1 virions packaged in cells also expressing the decoy RHA peptides subsequently had enhanced infectivity. The data demonstrate interplay between key components of dsRNA metabolism, both connecting RHA to an important component of innate immunity and delineating an unanticipated role for PKR in RNA metabolism

    Type I Interferons and Interferon Regulatory Factors Regulate TNF-Related Apoptosis-Inducing Ligand (TRAIL) in HIV-1-Infected Macrophages

    Get PDF
    TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family that participates in HIV-1 pathogenesis through the depletion of CD4+ T cells. TRAIL is expressed on the cell membrane of peripheral immune cells and can be cleaved into a soluble, secreted form. The regulation of TRAIL in macrophages during HIV-1 infection is not completely understood. In this study, we investigated the mechanism(s) of TRAIL expression in HIV-1-infected macrophages, an important cell type in HIV-1 pathogenesis. A human monocyte-derived macrophage (MDM) culture system was infected with macrophage-tropic HIV-1ADA, HIV-1JR-FL, or HIV-1BAL strains. TRAIL, predominantly the membrane-bound form, increased following HIV-1 infection. We found that HIV-1 infection also induced interferon regulatory factor (IRF)-1, IRF-7 gene expression and signal transducers and activators of transcription 1 (STAT1) activation. Small interfering RNA knockdown of IRF-1 or IRF-7, but not IRF-3, reduced STAT1 activation and TRAIL expression. Furthermore, the upregulation of IRF-1, IRF-7, TRAIL, and the activation of STAT1 by HIV-1 infection was reduced by the treatment of type I interferon (IFN)-neutralizing antibodies. In addition, inhibition of STAT1 by fludarabine abolished IRF-1, IRF-7, and TRAIL upregulation. We conclude that IRF-1, IRF-7, type I IFNs, and STAT1 form a signaling feedback loop that is critical in regulating TRAIL expression in HIV-1-infected macrophages

    The neutron and its role in cosmology and particle physics

    Full text link
    Experiments with cold and ultracold neutrons have reached a level of precision such that problems far beyond the scale of the present Standard Model of particle physics become accessible to experimental investigation. Due to the close links between particle physics and cosmology, these studies also permit a deep look into the very first instances of our universe. First addressed in this article, both in theory and experiment, is the problem of baryogenesis ... The question how baryogenesis could have happened is open to experimental tests, and it turns out that this problem can be curbed by the very stringent limits on an electric dipole moment of the neutron, a quantity that also has deep implications for particle physics. Then we discuss the recent spectacular observation of neutron quantization in the earth's gravitational field and of resonance transitions between such gravitational energy states. These measurements, together with new evaluations of neutron scattering data, set new constraints on deviations from Newton's gravitational law at the picometer scale. Such deviations are predicted in modern theories with extra-dimensions that propose unification of the Planck scale with the scale of the Standard Model ... Another main topic is the weak-interaction parameters in various fields of physics and astrophysics that must all be derived from measured neutron decay data. Up to now, about 10 different neutron decay observables have been measured, much more than needed in the electroweak Standard Model. This allows various precise tests for new physics beyond the Standard Model, competing with or surpassing similar tests at high-energy. The review ends with a discussion of neutron and nuclear data required in the synthesis of the elements during the "first three minutes" and later on in stellar nucleosynthesis.Comment: 91 pages, 30 figures, accepted by Reviews of Modern Physic

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    In Vivo Expression from the RpoS-Dependent P1 Promoter of the Osmotically Regulated proU Operon in Escherichia coli and Salmonella enterica Serovar Typhimurium: Activation by rho and hns Mutations and by Cold Stress

    Get PDF
    Unlike the ς(70)-controlled P2 promoter for the osmotically regulated proU operon of Escherichia coli and Salmonella enterica serovar Typhimurium, the ς(s)-controlled P1 promoter situated further upstream appears not to contribute to expression of the proU structural genes under ordinary growth conditions. For S. enterica proU P1, there is evidence that promoter crypticity is the result of a transcription attenuation phenomenon which is relieved by the deletion of a 22-base C-rich segment in the transcript. In this study, we have sought to identify growth conditions and trans-acting mutations which activate in vivo expression from proU P1. The cryptic S. enterica proU P1 promoter was activated, individually and additively, in a rho mutant (which is defective in the transcription termination factor Rho) as well as by growth at 10°C. The E. coli proU P1 promoter was also cryptic in constructs that carried 1.2 kb of downstream proU sequence, and in these cases activation of in vivo expression was achieved either by a rho mutation during growth at 10°C or by an hns null mutation (affecting the nucleoid protein H-NS) at 30°C. The rho mutation had no effect at either 10 or 30°C on in vivo expression from two other ς(s)-controlled promoters tested, those for osmY and csiD. In cells lacking the RNA-binding regulator protein Hfq, induction of E. coli proU P1 at 10°C and by hns mutation at 30°C was still observed, although the hfq mutation was associated with a reduction in the absolute levels of P1 expression. Our results suggest that expression from proU P1 is modulated both by nucleoid structure and by Rho-mediated transcription attenuation and that this promoter may be physiologically important for proU operon expression during low-temperature growth
    corecore