148 research outputs found
An adaptive polynomial based forward prediction algorithm for multi-actuator real-time dynamic substructuring
Real-time dynamic substructuring is a novel experimental technique used to test the dynamic behaviour of complex structures. The technique involves creating a hybrid model of the entire structure by combining an experimental test piece—the substructure—with a set of numerical models. In this paper we describe a multi-actuator substructured system of a coupled three mass–spring–damper system and use this to demonstrate the nature of delay errors which can first lead to a loss of accuracy and then to instability of the substructuring algorithm.
Synchronization theory and delay compensation are used to show how the delay errors, present in the transfer systems, can be minimized by online forward prediction. This new algorithm uses a more generic approach than the single step algorithms applied to substructuring thus far, giving considerable advantages in terms of flexibility and accuracy. The basic algorithm is then extended by closing the control loop resulting in an error driven adaptive feedback controller which can operate with no prior knowledge of the plant dynamics. The adaptive algorithm is then used to perform a real substructuring test using experimentally measured forces to deliver a stable substructuring algorithm
Transport Properties through Double Barrier Structure in Graphene
The mode-dependent transmission of relativistic ballistic massless Dirac
fermion through a graphene based double barrier structure is being investigated
for various barrier parameters. We compare our results with already published
work and point out the relevance of these findings to a systematic study of the
transport properties in double barrier structures. An interesting situation
arises when we set the potential in the leads to zero, then our 2D problem
reduces effectively to a 1D massive Dirac equation with an effective mass
proportional to the quantized wave number along the transverse direction.
Furthermore we have shown that the minimal conductivity and maximal Fano factor
remain insensitive to the ratio between the two potentials V_2/V_1=\alpha.Comment: 18 pages, 12 figures, clarifications and reference added, misprints
corrected. Version to appear in JLT
Exact eigenstate analysis of finite-frequency conductivity in graphene
We employ the exact eigenstate basis formalism to study electrical
conductivity in graphene, in the presence of short-range diagonal disorder and
inter-valley scattering. We find that for disorder strength, 5, the
density of states is flat. We, then, make connection, using the MRG approach,
with the work of Abrahams \textit{et al.} and find a very good agreement for
disorder strength, = 5. For low disorder strength, = 2, we plot the
energy-resolved current matrix elements squared for different locations of the
Fermi energy from the band centre. We find that the states close to the band
centre are more extended and falls of nearly as as we move away
from the band centre. Further studies of current matrix elements versus
disorder strength suggests a cross-over from weakly localized to a very weakly
localized system. We calculate conductivity using Kubo Greenwood formula and
show that, for low disorder strength, conductivity is in a good qualitative
agreement with the experiments, even for the on-site disorder. The intensity
plots of the eigenstates also reveal clear signatures of puddle formation for
very small carrier concentration. We also make comparison with square lattice
and find that graphene is more easily localized when subject to disorder.Comment: 11 pages,15 figure
Klein tunneling in graphene: optics with massless electrons
This article provides a pedagogical review on Klein tunneling in graphene,
i.e. the peculiar tunneling properties of two-dimensional massless Dirac
electrons. We consider two simple situations in detail: a massless Dirac
electron incident either on a potential step or on a potential barrier and use
elementary quantum wave mechanics to obtain the transmission probability. We
emphasize the connection to related phenomena in optics, such as the
Snell-Descartes law of refraction, total internal reflection, Fabry-P\'erot
resonances, negative refraction index materials (the so called meta-materials),
etc. We also stress that Klein tunneling is not a genuine quantum tunneling
effect as it does not necessarily involve passing through a classically
forbidden region via evanescent waves. A crucial role in Klein tunneling is
played by the conservation of (sublattice) pseudo-spin, which is discussed in
detail. A major consequence is the absence of backscattering at normal
incidence, of which we give a new shorten proof. The current experimental
status is also thoroughly reviewed. The appendix contains the discussion of a
one-dimensional toy model that clearly illustrates the difference in Klein
tunneling between mono- and bi-layer graphene.Comment: short review article, 18 pages, 14 figures; v3: references added,
several figures slightly modifie
Decays, contact P-wave interactions and hyperfine structure in Omega- exotic atoms
Contact -wave interactions connected to the Larmor interaction of a
magnetic dipole and Thomas spin precession in the filed of an electric
quadrupole are described and their implications for spectroscopy of exotic
-atoms are studied. In order to evaluate the magnitude of the
contact -wave interactions as compared to the conventional long-range
interactions and the sensitivity of spectroscopic data to the
-hyperon quadrupole moment, we consider states of atoms formed with light stable nuclei with spins and atomic
numbers . The energy level splitting caused by the contact
interactions is 2-5 orders of magnitude smaller than the conventional
long-range interactions. Strong decay widths of atoms due to
reactions and ,
induced by -channel kaon exchanges, are calculated. atoms
formed with the light nuclei have strong widths 5-6 orders of magnitude higher
than splitting caused by the contact interactions. The low- pattern in the
energy spectra of intermediate- and high- atoms thus cannot be
observed. The quadrupole moment can be measured by observing
-rays from circular transitions between high- levels in
exotic atoms. The effect of strong interactions in Pb
atoms is negligible starting from . The contact -wave
interactions exist in ordinary atoms and -meson atoms.Comment: LaTeX 49 pages, 3 eps figures, replaced with published versio
Graphene: new bridge between condensed matter physics and quantum electrodynamics
Graphene is the first example of truly two-dimensional crystals - it's just
one layer of carbon atoms. It turns out to be a gapless semiconductor with
unique electronic properties resulting from the fact that charge carriers in
graphene demonstrate charge-conjugation symmetry between electrons and holes
and possess an internal degree of freedom similar to ``chirality'' for
ultrarelativistic elementary particles. It provides unexpected bridge between
condensed matter physics and quantum electrodynamics (QED). In particular, the
relativistic Zitterbewegung leads to the minimum conductivity of order of
conductance quantum in the limit of zero doping; the concept of Klein
paradox (tunneling of relativistic particles) provides an essential insight
into electron propagation through potential barriers; vacuum polarization
around charge impurities is essential for understanding of high electron
mobility in graphene; index theorem explains anomalous quantum Hall effect.Comment: misprints are fixed; to appear in special issue of Solid State
Communication
Elastic electron deuteron scattering with consistent meson exchange and relativistic contributions of leading order
The influence of relativistic contributions to elastic electron deuteron
scattering is studied systematically at low and intermediate momentum transfers
( fm). In a -expansion, all leading order
relativistic -exchange contributions consistent with the Bonn OBEPQ models
are included. In addition, static heavy meson exchange currents including boost
terms and lowest order -currents are considered. Sizeable
effects from the various relativistic two-body contributions, mainly from
-exchange, have been found in form factors, structure functions and the
tensor polarization . Furthermore, static properties, viz. magnetic
dipole and charge quadrupole moments and the mean square charge radius are
evaluated.Comment: 15 pages Latex including 5 figures, final version accepted for
publication in Phys.Rev.C Details of changes: (i) The notation of the curves
in Figs. 1 and 2 have been clarified with respect to left and right panels.
(ii) In Figs. 3 and 4 an experimental point for T_20 has been added and a
corresponding reference [48] (iii) At the end of the text we have added a
paragraph concerning the quality of the Bonn OBEPQ potential
Modeling the actinides with disordered local moments
A first-principles disordered local moment (DLM) picture within the
local-spin-density and coherent potential approximations (LSDA+CPA) of the
actinides is presented. The parameter free theory gives an accurate description
of bond lengths and bulk modulus. The case of -Pu is studied in
particular and the calculated density of states is compared to data from
photo-electron spectroscopy. The relation between the DLM description, the
dynamical mean field approach and spin-polarized magnetically ordered modeling
is discussed.Comment: 6 pages, 4 figure
Interplay between edge states and simple bulk defects in graphene nanoribbons
We study the interplay between the edge states and a single impurity in a
zigzag graphene nanoribbon. We use tight-binding exact diagonalization
techniques, as well as density functional theory calculations to obtain the
eigenvalue spectrum, the eigenfunctions, as well the dependence of the local
density of states (LDOS) on energy and position. We note that roughly half of
the unperturbed eigenstates in the spectrum of the finite-size ribbon hybridize
with the impurity state, and the corresponding eigenvalues are shifted with
respect to their unperturbed values. The maximum shift and hybridization occur
for a state whose energy is inverse proportional to the impurity potential;
this energy is that of the impurity peak in the DOS spectrum. We find that the
interference between the impurity and the edge gives rise to peculiar
modifications of the LDOS of the nanoribbon, in particular to oscillations of
the edge LDOS. These effects depend on the size of the system, and decay with
the distance between the edge and the impurity.Comment: 10 pages, 15 figures, revtex
- …