85 research outputs found

    Understanding long-term disability in multiple sclerosis: A clinical, MRI and genetic study in patients with clinically isolated syndrome

    Get PDF
    This thesis concerns a 15 year follow-up study of a cohort of people with clinically isolated syndromes (CIS) suggestive of multiple sclerosis (MS). I investigate (1) how MRI can be used to improve the diagnosis of MS around the time of CIS; (2) early MRI predictors of long-term disease course in people with CIS; and (3) mechanisms responsible for long-term disability and disease progression in relapse-onset MS. There has been significant evolution of the diagnostic criteria for MS in recent years. I examined the influence of changing diagnostic criteria for MS by retrospectively applying the McDonald criteria in the CIS cohort. I found that MS can be diagnosed significantly earlier in CIS patients using the McDonald criteria. I investigated two possible modifications to dissemination in space (DIS) criteria: firstly whether lesions in the symptomatic region should be included in DIS; and secondly whether the number of periventricular lesions in DIS criteria should be increased from 1 to 3. Including lesions in the symptomatic region improved the performance of MRI criteria but increasing the number of periventricular lesions in DIS did not improve diagnostic accuracy or specificity. These findings will inform future revisions to the diagnostic criteria for MS. MS-related disability is frequently referable to the spinal cord. I investigated early brain and spinal cord MRI abnormalities in the CIS cohort and found that spinal cord measures explained more of the disability after 5 years than brain MRI measures. Asymptomatic spinal cord lesions at the time of presentation in patients with a non-spinal CIS were the strongest early MRI predictor of disability after 5 years. These findings were then confirmed with long-term follow-up: spinal cord lesions at the time of presentation with CIS and new spinal cord lesions after 1 year and 3 years were associated with both physical disability and secondary progressive disease course after 15 years. These findings suggest that spinal cord MRI may provide important prognostic information in people with CIS and early MS. Early spinal cord damage may be an important mechanism contributing to long-term disability and disease progression in relapse-onset MS. Disease course heterogeneity in MS remains poorly explained. I investigated the influence of HLA-DRB1*15:01 on disease course and MRI measures of inflammation and neurodegeneration in the CIS cohort. Carriage of the HLA-DRB1*15:01 allele was associated with a faster accrual of disability, greater inflammatory disease burden and a faster rate of brain atrophy over the 15 year follow-up period. The HLA-DRB1*15:01 allele may not only influence the susceptibility to MS but also the disease phenotype and long-term clinical course. Neuroaxonal energy failure is thought to be central to disease progression in MS. I applied the novel metabolic imaging method sodium (23Na) MRI in patients followed up after 15 years to investigate the relationship of brain sodium accumulation in vivo with long-term disease course and disability. I found evidence of sodium accumulation in grey matter, in normal-appearing white matter and in lesions in people who developed MS. Cortical grey matter sodium concentration was associated with physical disability and cognitive performance at 15 years, even after adjusting for brain atrophy. 23Na-MRI should be investigated further as a possible outcome measure in future neuroprotection trials

    Periventricular lesions and MS diagnostic criteria in young adults with typical clinically isolated syndromes.

    Get PDF
    In patients who present with a clinically isolated syndrome (CIS), whose features are suggestive of multiple sclerosis (MS), fulfilling McDonald 2010 magnetic resonance imaging (MRI) criteria for dissemination in space (DIS) and dissemination in time (DIT) enables a diagnosis of MS. While ⩾1 periventricular lesion is included in the 2010 DIS criteria, earlier McDonald criteria required ⩾3 periventricular lesions to confirm DIS and recent Magnetic Resonance Imaging in Multiple Sclerosis (MAGNIMS)-recommended DIS criteria also require ⩾3 lesions. We investigated the effect of varying the required number of periventricular lesions and found that the best combination of specificity and sensitivity for clinically definite MS was seen for ⩾1 periventricular lesion using both the McDonald 2010 and MAGNIMS 2016 criteria

    HLA-DRB1*1501 influences long-term disability progression and tissue damage on MRI in relapse-onset multiple sclerosis

    Get PDF
    BACKGROUND: Whether genetic factors influence the long-term course of multiple sclerosis (MS) is unresolved. OBJECTIVE: To determine the influence of HLA-DRB1*1501 on long-term disease course in a homogeneous cohort of clinically isolated syndrome (CIS) patients. METHODS: One hundred seven patients underwent clinical and MRI assessment at the time of CIS and after 1, 3, 5 and 15 years. HLA-DRB1*1501 status was determined using Sanger sequencing and tagging of the rs3135388 polymorphism. Linear/Poisson mixed-effects models were used to investigate rates of change in EDSS and MRI measures based on HLA-DRB1*1501 status. RESULTS: HLA-DRB1*1501 -positive (n = 52) patients showed a faster rate of disability worsening compared with the HLA-DRB1*1501 -negative (n = 55) patients (annualised change in EDSS 0.14/year vs. 0.08/year, p < 0.025), and a greater annualised change in T2 lesion volume (adjusted difference 0.45 mL/year, p < 0.025), a higher number of gadolinium-enhancing lesions, and a faster rate of brain (adjusted difference -0.12%/year, p < 0.05) and spinal cord atrophy (adjusted difference -0.22 mm2/year, p < 0.05). INTERPRETATION: These findings provide evidence that the HLA-DRB1*1501 allele plays a role in MS severity, as measured by long-term disability worsening and a greater extent of inflammatory disease activity and tissue loss. HLA-DRB1*1501 may provide useful information when considering prognosis and treatment decisions in early relapse-onset MS

    Genetic influences on disease course and severity, 30 years after a clinically isolated syndrome

    Get PDF
    Multiple sclerosis risk has a well-established polygenic component, yet the genetic contribution to disease course and severity remains unclear and difficult to examine. Accurately measuring disease progression requires long-term study of clinical and radiological outcomes with sufficient follow-up duration to confidently confirm disability accrual and multiple sclerosis phenotypes. In this retrospective study, we explore genetic influences on long-term disease course and severity; in a unique cohort of clinically isolated syndrome patients with homogenous 30-year disease duration, deep clinical phenotyping and advanced MRI metrics. Sixty-one clinically isolated syndrome patients [41 female (67%): 20 male (33%)] underwent clinical and MRI assessment at baseline, 1-, 5-, 10-, 14-, 20- and 30-year follow-up (mean age ± standard deviation: 60.9 ± 6.5 years). After 30 years, 29 patients developed relapsing-remitting multiple sclerosis, 15 developed secondary progressive multiple sclerosis and 17 still had a clinically isolated syndrome. Twenty-seven genes were investigated for associations with clinical outcomes [including disease course and Expanded Disability Status Scale (EDSS)] and brain MRI (including white matter lesions, cortical lesions, and brain tissue volumes) at the 30-year follow-up. Genetic associations with changes in EDSS, relapses, white matter lesions and brain atrophy (third ventricular and medullary measurements) over 30 years were assessed using mixed-effects models. HLA-DRB1*1501-positive (n = 26) patients showed faster white matter lesion accrual [+1.96 lesions/year (0.64-3.29), P = 3.8 × 10-3], greater 30-year white matter lesion volumes [+11.60 ml, (5.49-18.29), P = 1.27 × 10-3] and higher annualized relapse rates [+0.06 relapses/year (0.005-0.11), P = 0.031] compared with HLA-DRB1*1501-negative patients (n = 35). PVRL2-positive patients (n = 41) had more cortical lesions (+0.83 [0.08-1.66], P = 0.042), faster EDSS worsening [+0.06 points/year (0.02-0.11), P = 0.010], greater 30-year EDSS [+1.72 (0.49-2.93), P = 0.013; multiple sclerosis cases: +2.60 (1.30-3.87), P = 2.02 × 10-3], and greater risk of secondary progressive multiple sclerosis [odds ratio (OR) = 12.25 (1.15-23.10), P = 0.031] than PVRL2-negative patients (n = 18). In contrast, IRX1-positive (n = 30) patients had preserved 30-year grey matter fraction [+0.76% (0.28-1.29), P = 8.4 × 10-3], lower risk of cortical lesions [OR = 0.22 (0.05-0.99), P = 0.049] and lower 30-year EDSS [-1.35 (-0.87,-3.44), P = 0.026; multiple sclerosis cases: -2.12 (-0.87, -3.44), P = 5.02 × 10-3] than IRX1-negative patients (n = 30). In multiple sclerosis cases, IRX1-positive patients also had slower EDSS worsening [-0.07 points/year (-0.01,-0.13), P = 0.015] and lower risk of secondary progressive multiple sclerosis [OR = 0.19 (0.04-0.92), P = 0.042]. These exploratory findings support diverse genetic influences on pathological mechanisms associated with multiple sclerosis disease course. HLA-DRB1*1501 influenced white matter inflammation and relapses, while IRX1 (protective) and PVRL2 (adverse) were associated with grey matter pathology (cortical lesions and atrophy), long-term disability worsening and the risk of developing secondary progressive multiple sclerosis

    Early imaging predictors of long-term outcomes in relapse-onset multiple sclerosis.

    Get PDF
    The clinical course of relapse-onset multiple sclerosis is highly variable. Demographic factors, clinical features and global brain T2 lesion load have limited value in counselling individual patients. We investigated early MRI predictors of key long-term outcomes including secondary progressive multiple sclerosis, physical disability and cognitive performance, 15 years after a clinically isolated syndrome. A cohort of patients with clinically isolated syndrome (n = 178) was prospectively recruited within 3 months of clinical disease onset and studied with MRI scans of the brain and spinal cord at study entry (baseline) and after 1 and 3 years. MRI measures at each time point included: supratentorial, infratentorial, spinal cord and gadolinium-enhancing lesion number, brain and spinal cord volumetric measures. The patients were followed-up clinically after ∼15 years to determine disease course, and disability was assessed using the Expanded Disability Status Scale, Paced Auditory Serial Addition Test and Symbol Digit Modalities Test. Multivariable logistic regression and multivariable linear regression models identified independent MRI predictors of secondary progressive multiple sclerosis and Expanded Disability Status Scale, Paced Auditory Serial Addition Test and Symbol Digit Modalities Test, respectively. After 15 years, 166 (93%) patients were assessed clinically: 119 (72%) had multiple sclerosis [94 (57%) relapsing-remitting, 25 (15%) secondary progressive], 45 (27%) remained clinically isolated syndrome and two (1%) developed other disorders. Physical disability was overall low in the multiple sclerosis patients (median Expanded Disability Status Scale 2, range 0-10); 71% were untreated. Baseline gadolinium-enhancing (odds ratio 3.16, P < 0.01) and spinal cord lesions (odds ratio 4.71, P < 0.01) were independently associated with secondary progressive multiple sclerosis at 15 years. When considering 1- and 3-year MRI variables, baseline gadolinium-enhancing lesions remained significant and new spinal cord lesions over time were associated with secondary progressive multiple sclerosis. Baseline gadolinium-enhancing (β = 1.32, P < 0.01) and spinal cord lesions (β = 1.53, P < 0.01) showed a consistent association with Expanded Disability Status Scale at 15 years. Baseline gadolinium-enhancing lesions was also associated with performance on the Paced Auditory Serial Addition Test (β = - 0.79, P < 0.01) and Symbol Digit Modalities Test (β = -0.70, P = 0.02) at 15 years. Our findings suggest that early focal inflammatory disease activity and spinal cord lesions are predictors of very long-term disease outcomes in relapse-onset multiple sclerosis. Established MRI measures, available in routine clinical practice, may be useful in counselling patients with early multiple sclerosis about long-term prognosis, and personalizing treatment plans

    Deep gray matter volume loss drives disability worsening in multiple sclerosis.

    Get PDF
    OBJECTIVE: Gray matter (GM) atrophy occurs in all multiple sclerosis (MS) phenotypes. We investigated whether there is a spatiotemporal pattern of GM atrophy that is associated with faster disability accumulation in MS. METHODS: We analyzed 3,604 brain high-resolution T1-weighted magnetic resonance imaging scans from 1,417 participants: 1,214 MS patients (253 clinically isolated syndrome [CIS], 708 relapsing-remitting [RRMS], 128 secondary-progressive [SPMS], and 125 primary-progressive [PPMS]), over an average follow-up of 2.41 years (standard deviation [SD] = 1.97), and 203 healthy controls (HCs; average follow-up = 1.83 year; SD = 1.77), attending seven European centers. Disability was assessed with the Expanded Disability Status Scale (EDSS). We obtained volumes of the deep GM (DGM), temporal, frontal, parietal, occipital and cerebellar GM, brainstem, and cerebral white matter. Hierarchical mixed models assessed annual percentage rate of regional tissue loss and identified regional volumes associated with time-to-EDSS progression. RESULTS: SPMS showed the lowest baseline volumes of cortical GM and DGM. Of all baseline regional volumes, only that of the DGM predicted time-to-EDSS progression (hazard ratio = 0.73; 95% confidence interval, 0.65, 0.82; p < 0.001): for every standard deviation decrease in baseline DGM volume, the risk of presenting a shorter time to EDSS worsening during follow-up increased by 27%. Of all longitudinal measures, DGM showed the fastest annual rate of atrophy, which was faster in SPMS (-1.45%), PPMS (-1.66%), and RRMS (-1.34%) than CIS (-0.88%) and HCs (-0.94%; p < 0.01). The rate of temporal GM atrophy in SPMS (-1.21%) was significantly faster than RRMS (-0.76%), CIS (-0.75%), and HCs (-0.51%). Similarly, the rate of parietal GM atrophy in SPMS (-1.24-%) was faster than CIS (-0.63%) and HCs (-0.23%; all p values <0.05). Only the atrophy rate in DGM in patients was significantly associated with disability accumulation (beta = 0.04; p < 0.001). INTERPRETATION: This large, multicenter and longitudinal study shows that DGM volume loss drives disability accumulation in MS, and that temporal cortical GM shows accelerated atrophy in SPMS than RRMS. The difference in regional GM atrophy development between phenotypes needs to be taken into account when evaluating treatment effect of therapeutic interventions. Ann Neurol 2018;83:210-222

    Whole Grain Wheat Consumption Affects Postprandial Inflammatory Response in a Randomized Controlled Trial in Overweight and Obese Adults with Mild Hypercholesterolemia in the Graandioos Study

    Get PDF
    BACKGROUND: Whole grain wheat (WGW) consumption is associated with health benefits in observational studies. However, WGW randomized controlled trial (RCT) studies show mixed effects. OBJECTIVES: The health impact of WGW consumption was investigated by quantification of the body's resilience, which was defined as the "ability to adapt to a standardized challenge." METHODS: A double-blind RCT was performed with overweight and obese (BMI: 25-35 kg/m2) men (n = 19) and postmenopausal women (n = 31) aged 45-70 y, with mildly elevated plasma total cholesterol (>5 mmol/L), who were randomly assigned to either 12-wk WGW (98 g/d) or refined wheat (RW). Before and after the intervention a standardized mixed-meal challenge was performed. Plasma samples were taken after overnight fasting and postprandially (30, 60, 120, and 240 min). Thirty-one biomarkers were quantified focusing on metabolism, liver, cardiovascular health, and inflammation. Linear mixed-models evaluated fasting compared with postprandial intervention effects. Health space models were used to evaluate intervention effects as composite markers representing resilience of inflammation, liver, and metabolism. RESULTS: Postprandial biomarker changes related to liver showed decreased alanine aminotransferase by WGW (P = 0.03) and increased β-hydroxybutyrate (P = 0.001) response in RW. Postprandial changes related to inflammation showed increased C-reactive protein (P = 0.001), IL-6 (P = 0.02), IL-8 (P = 0.007), and decreased IL-1B (P = 0.0002) in RW and decreased C-reactive protein (P < 0.0001), serum amyloid A (P < 0.0001), IL-8 (P = 0.02), and IL-10 (P < 0.0001) in WGW. Health space visualization demonstrated diminished inflammatory (P < 0.01) and liver resilience (P < 0.01) by RW, whereas liver resilience was rejuvenated by WGW (P < 0.05). CONCLUSIONS: Twelve-week 98 g/d WGW consumption can promote liver and inflammatory resilience in overweight and obese subjects with mildly elevated plasma cholesterol. The health space approach appeared appropriate to evaluate intervention effects as composite markers. This trial was registered at www.clinicaltrials.gov as NCT02385149.</p
    • …
    corecore