57 research outputs found

    Climate Change Impacts on Maize-Yield Potential in the Southwestern United States

    Get PDF
    Agricultural productivity is strongly dependent on local climate conditions determined by meteorological parameters thus assessing the potential impact of the climate change and variability on regional agricultural systems has become crucial. To ensure food security, it is required to find under performing regions to investments and assess yields change in high-performing regions in coming decades under climate change and variability. In this study, we investigate the response of maize yield potential (Yp) on climate change scenario using Agricultural Production Systems sIMulator (APSIM) crop model over the Southwestern U.S. (SWUS) region. APSIM’s modules are essentially point-based models representing the system at a single point in space. We develop automated modeling framework (ApsimRegions, 2013), which allows the APSIM to be run over a large domain with about a thousand points over the study area. Using 21-year period (1991-2011) of North American Regional Reanalysis (NARR) data, we perform sensitivity test of the maize Yp to assess the relative contribution of climate variables, by adding standard deviation of the climatological values. The results show that maximum and minimum temperature greatly contribute to the variation of maize yields over the SWUS on the interannual time scale, depending on geographical locations with varied local climates. In order to access data of present and future climate, we have completed high-resolution regional climate simulation by dynamically downscaling general circulation model results (GFDL-ESM2M) using regional climate models(WRF and OLAM). In this study, 20 years of integration period is selected in both historical period (1981-2000) and future period (2031-2050). The potential maize yields in the future period under the RCP8.5 greenhouse gas concentrations pathways show that the yields are significantly changed comparing to the historical period. In the generally rising temperature regime, the projected Yp shows strong geospatial variations according to the regional climate characteristics

    3D cut-cell modelling for high-resolution atmospheric simulations

    Full text link
    Owing to the recent, rapid development of computer technology, the resolution of atmospheric numerical models has increased substantially. With the use of next-generation supercomputers, atmospheric simulations using horizontal grid intervals of O(100) m or less will gain popularity. At such high resolution more of the steep gradients in mountainous terrain will be resolved, which may result in large truncation errors in those models using terrain-following coordinates. In this study, a new 3D Cartesian coordinate non-hydrostatic atmospheric model is developed. A cut-cell representation of topography based on finite-volume discretization is combined with a cell-merging approach, in which small cut-cells are merged with neighboring cells either vertically or horizontally. In addition, a block-structured mesh-refinement technique is introduced to achieve a variable resolution on the model grid with the finest resolution occurring close to the terrain surface. The model successfully reproduces a flow over a 3D bell-shaped hill that shows a good agreement with the flow predicted by the linear theory. The ability of the model to simulate flows over steep terrain is demonstrated using a hemisphere-shaped hill where the maximum slope angle is resolved at 71 degrees. The advantage of a locally refined grid around a 3D hill, with cut-cells at the terrain surface, is also demonstrated using the hemisphere-shaped hill. The model reproduces smooth mountain waves propagating over varying grid resolution without introducing large errors associated with the change of mesh resolution. At the same time, the model shows a good scalability on a locally refined grid with the use of OpenMP.Comment: 19 pages, 16 figures. Revised version, accepted for publication in QJRM

    X-ray induced electron and ion fragmentation dynamics in IBr

    Full text link
    Characterization of the inner-shell decay processes in molecules containing heavy elements is key to understanding x-ray damage of molecules and materials and for medical applications with Auger-electron-emitting radionuclides. The 1s hole states of heavy atoms can be produced by absorption of tunable x-rays and the resulting vacancy decays characterized by recording emitted photons, electrons, and ions. The 1s hole states in heavy elements have large x-ray fluorescence yields that transfer the hole to intermediate electron shells that then decay by sequential Auger-electron transitions that increase the ion's charge state until the final state is reached. In molecules the charge is spread across the atomic sites, resulting in dissociation to energetic atomic ions. We have used x-ray/ion coincidence spectroscopy to measure charge states and energies of Iq+^{q+} and Brqâ€Č+^{q'+} atomic ions following 1s ionization at the I and Br \textit{K}-edges of IBr. We present the charge states and kinetic energies of the two correlated fragment ions associated with core-excited states produced during the various steps of the cascades. To understand the dynamics leading to the ion data, we develop a computational model that combines Monte-Carlo/Molecular Dynamics simulations with a classical over-the-barrier model to track inner-shell cascades and redistribution of electrons in valence orbitals and nuclear motion of fragments

    Infiltration from the pedon to global grid scales: an overview and outlook for land surface modelling

    Get PDF
    Infiltration in soils is a key process that partitions precipitation at the land surface in surface runoff and water that enters the soil profile. We reviewed the basic principles of water infiltration in soils and we analyzed approaches commonly used in Land Surface Models (LSMs) to quantify infiltration as well as its numerical implementation and sensitivity to model parameters. We reviewed methods to upscale infiltration from the point to the field, hill slope, and grid cell scale of LSMs. Despite the progress that has been made, upscaling of local scale infiltration processes to the grid scale used in LSMs is still far from being treated rigorously. We still lack a consistent theoretical framework to predict effective fluxes and parameters that control infiltration in LSMs. Our analysis shows, that there is a large variety in approaches used to estimate soil hydraulic properties. Novel, highly resolved soil information at higher resolutions than the grid scale of LSMs may help in better quantifying subgrid variability of key infiltration parameters. Currently, only a few land surface models consider the impact of soil structure on soil hydraulic properties. Finally, we identified several processes not yet considered in LSMs that are known to strongly influence infiltration. Especially, the impact of soil structure on infiltration requires further research. In order to tackle the above challenges and integrate current knowledge on soil processes affecting infiltration processes on land surface models, we advocate a stronger exchange and scientific interaction between the soil and the land surface modelling communities
    • 

    corecore