242 research outputs found

    Modulation of Atlantic Aerosols by the Madden-Julian Oscillation

    Get PDF
    Much like the better-known EI Nino-Southern Oscillation, the Madden-Julian Oscillation (MJO) is a global-scale atmospheric phenomenon. The MJO involves periodic, systematic changes in the distribution of clouds and precipitation over the western Pacific and Indian oceans, along with differences in wind intensity over even more extensive areas, including the north and subtropical Atlantic Ocean. The lead authors of this paper developed a sophisticated mathematical technique for mapping the spatial and temporal behavior of changes in the atmosphere produced by the MJO. In a previous paper, we applied this technique to search for modulation of airborne particle amount in the eastern hemisphere associated with the "wet" (cloudy) vs. "dry" phases of the MJO. The study used primarily AVHRR, MODIS, and TOMS satellite-retrieved aerosol amount, but concluded that other factors, such as cloud contamination of the satellite signals, probably dominated the observed variations. The current paper looks at MJO modulation of desert dust transport eastward across the Atlantic from northern Africa, a region much less subject to systematic cloud contamination than the eastern hemisphere areas studied previously. In this case, a distinct aerosol signal appears, showing that dust is transported westward much more effectively during the MJO phase that favors westward-flowing wind, and such transport is suppressed when the MJO reduces these winds. Aside form the significant achievement in identifying such an effect, the result implies that an important component of global dust transport can be predicted based on the phase of the MJO. As a consequence, the impact of airborne dust on storm development in the Atlantic, and on dust deposition downwind of the desert sources, can also be predicted and more accurately modeled

    Increasing spatiotemporal proximity of heat and precipitation extremes in a warming world quantified by a large model ensemble

    Get PDF
    Increases in climate hazards and their impacts mark one of the major challenges of climate change. Situations in which hazards occur close enough to one another to result in amplified impacts, because systems are insufficiently resilient or because hazards themselves are made more severe, are of special concern. We consider projected changes in such compounding hazards using the MPI Grand Ensemble under the moderate (RCP4.5) emissions scenario, which produces warming of about 2.25°C between pre-industrial (1851-1880) and 2100. We find that extreme heat events occurring on 3 or more consecutive days increase in frequency by 100-300%, and consecutive extreme precipitation events increase in most regions, nearly doubling for some. The chance of concurrent heat and drought leading to simultaneous maize failures in 3 or more breadbasket regions increases by about 50%, while interannual wet-dry oscillations become at least 20% more likely across much of the subtropics. Our results highlight the importance of taking compounding climate extremes into account when looking at possible tipping points of socio-environmental systems

    Vertical structure of MJO-related subtropical ozone variations from MLS, TES, and SHADOZ data

    Get PDF
    Tian et al. (2007) found that the MJO-related total column ozone (O_3) anomalies of 10 DU (peak-to-trough) are mainly evident over the subtropics and dynamically driven by the vertical movement of the subtropical tropopause layer. It was then hypothesized that the subtropical total column O_3 anomalies are primarily associated with the O_3 variability in the stratosphere rather the troposphere. In this paper, we investigate the vertical structure of MJO-related subtropical O_3 variations using the vertical O_3 profiles from the Aura Microwave Limb Sounder (MLS) and Tropospheric Emission Spectrometer (TES), as well as in-situ measurements by the Southern Hemisphere Additional Ozonesondes (SHADOZ) project. Our analysis indicates that the subtropical O_3 anomalies maximize approximately in the lower stratosphere (60–100 hPa). Furthermore, the spatial-temporal patterns of the subtropical O_3 anomalies in the lower stratosphere are very similar to that of the total column. In particular, they are both dynamically driven by the vertical movement of subtropical tropopause. The subtropical partial O_3 column anomalies between 30–200 hPa accounts for more than 50 % of the total O_3 column anomalies. TES measurements show that at most 27 % of the total O_3 column anomalies are contributed by the tropospheric components. This indicates that the subtropical total column O_3 anomalies are mostly from the O3 anomalies in the lower stratosphere, which supports the hypothesis of Tian et al. (2007). The strong connection between the intraseasonal subtropical stratospheric O_3 variations and the MJO implies that the stratospheric O_3 variations may be predictable with similar lead times over the subtropics. Future work could involve a similar study or an O_3 budget analysis using a sophisticated chemical transport model in the near-equatorial regions where the observed MJO signals of total column O_3 are weak

    Monsoon Intraseasonal Oscillations as simulated by the Superparameterized Community Atmosphere Model

    Get PDF
    The relative success of the Community Atmosphere Model with superparameterized convection (SP-CAM) in simulating the space-time characteristics of the Madden Julian Oscillation encourages us to examine its simulation of the Indian summer monsoon and monsoon intraseasonal oscillations (MISOs). While the model simulates the onset and withdrawal of the Indian monsoon realistically, it has a significant wet bias in boreal summer precipitation over the Asian monsoon region. The space-time characteristics of the MISOs simulated by the SP-CAM are examined in detail and compared with those of the observed MISO to gain insight into the model's bias in simulating the seasonal mean. During northern summer, the model simulates a 20 day mode and a 60 day mode in place of the observed 15 and 45 day modes, respectively. The simulated 20 day mode appears to have no observed analog with a baroclinic vertical structure and strong northward propagation over Indian longitudes. The simulated 60 day mode seems to be a lower-frequency version of the observed 45 day mode with relatively slower northward propagation. The model's underestimation of light rain events and overestimation of heavy rain events are shown to be responsible for the wet bias of the model. More frequent occurrence of heavy rain events in the model is, in turn, related to the vertical structure of the higher-frequency modes. Northward propagation of the simulated 20 day mode is associated with a strong cyclonic vorticity at low levels north of the heating maximum associated with a smaller meridional scale of the simulated mode. The simulated vertical structure of heating indicates a strong maximum in the upper troposphere between 200 and 300 hPa. Such a heating profile seems to generate a higher-order baroclinic mode response with smaller meridional structure, stronger low-level cyclonic vorticity, enhanced low-level moisture convergence, and higher precipitation. Therefore, the vertical structure of heating simulated by the cloud-resolving model within SP-CAM may hold the key for improving the precipitation bias in the model

    Application of MJO Simulation Diagnostics to Climate Models

    Get PDF
    The ability of eight climate models to simulate the Madden-Julian oscillation (MJO) is examined using diagnostics developed by the U.S. Climate Variability and Predictability (CLIVAR) MJO Working Group. Although the MJO signal has been extracted throughout the annual cycle, this study focuses on the boreal winter (November-April) behavior. Initially, maps of the mean state and variance and equatorial space-time spectra of 850-hPa zonal wind and precipitation are compared with observations. Models best represent the intraseasonal space-time spectral peak in the zonal wind compared to that of precipitation. Using the phase-space representation of the multivariate principal components (PCs), the life cycle properties of the simulated MJOs are extracted, including the ability to represent how the MJO evolves from a given subphase and the associated decay time scales. On average, the MJO decay (e-folding) time scale for all models is shorter (~20- 29 days) than observations (~31 days). All models are able to produce a leading pair of multivariate principal components that represents eastward propagation of intraseasonal wind and precipitation anomalies, although the fraction of the variance is smaller than observed for all models. In some cases, the dominant time scale of these PCs is outside of the 30-80-day band. Several key variables associated with the model's MJO are investigated, including the surface latent heat flux, boundary layer (925 hPa) moisture convergence, and the vertical structure of moisture. Low-level moisture convergence ahead (east) of convection is associated with eastward propagation in most of the models. A few models are also able to simulate the gradual moistening of the lower troposphere that precedes observed MJO convection, as well as the observed geographical difference in the vertical structure of moisture associated with the MJO. The dependence of rainfall on lower tropospheric relative humidity and the fraction of rainfall that is stratiform are also discussed, including implications these diagnostics have for MJO simulation. Based on having the most realistic intraseasonal multivariate empirical orthogonal functions, principal component power spectra, equatorial eastward propagating outgoing longwave radiation (OLR), latent heat flux, low-level moisture convergence signals, and vertical structure of moisture over the Eastern Hemisphere, the superparameterized Community Atmosphere Model (SPCAM) and the ECHAM4/Ocean Isopycnal Model (OPYC) show the best skill at representing the MJO.open1149
    corecore