14 research outputs found

    Activity of Cyclic AMP Phosphodiesterases and Adenylyl Cyclase in Peripheral Nerve after Crush and Permanent Transection Injuries

    Get PDF
    Recent studies demonstrate that cAMP levels are tightly controlled during demyelination and remyelination in Schwann cells as cAMP decreases to 8–10% of normal following both sciatic nerve crush or permanent transection injury and only begins to increase in the crushed nerve after remyelination (Poduslo, J. F., Walikonis, R. S., Domec, M., Berg, C. T., and Holtz-Heppelmann, C. J. (1995) J. Neurochem. 65, 149–159). To investigate the mechanisms responsible for this change in cAMP levels, cAMP phosphodiesterase (PDE) and adenylyl cyclase activities were determined before and after sciatic nerve injury. Basal cAMP PDE activity in soluble endoneurial homogenates of normal nerve was 34.9 ± 1.9 pmol/mg of protein/min (χ̅ ± S.E.; n = 10). This activity increased about 3-fold within 6 days following both injuries. Basal PDE activity remained elevated in the transected nerve, but declined to 70 pmol/mg of protein/min in the crushed nerve at 21 and 35 days following injury. Isozyme-specific inhibitors and stimulators were used to identify the PDE families in the sciatic nerve. The lowK_m cAMP-specific (PDE4) and the Ca^(2+)/calmodulin-stimulated (PDE1) families were found to predominate in assays using endoneurial homogenates. The PDE4 inhibitor rolipram also increased cAMP levels significantly after incubation of endoneurial tissue with various isozyme-specific inhibitors, indicating that PDE4 plays a major role in determining cAMP levels. PDE4 mRNA was localized by in situ hybridization to cells identified as Schwann cells by colabeling of S100, a Schwann cell specific protein. Adenylyl cyclase activity declined following injury, from 3.7 pmol/mg of protein/min in normal nerve to 0.70 pmol/mg/min by 7 days following injury. Both decreased synthesis and increased degradation contribute, therefore, to the reduced levels of cAMP following peripheral nerve injury and are likely critical to the process of Wallerian degeneration

    Identification of proteins in the postsynaptic density fraction by mass spectrometry

    Get PDF
    Our understanding of the organization of postsynaptic signaling systems at excitatory synapses has been aided by the identification of proteins in the postsynaptic density (PSD) fraction, a subcellular fraction enriched in structures with the morphology of PSDs. In this study, we have completed the identification of most major proteins in the PSD fraction with the use of an analytical method based on mass spectrometry coupled with searching of the protein sequence databases. At least one protein in each of 26 prominent protein bands from the PSD fraction has now been identified. We found 7 proteins not previously known to be constituents of the PSD fraction and 24 that had previously been associated with the PSD by other methods. The newly identified proteins include the heavy chain of myosin-Va (dilute myosin), a motor protein thought to be involved in vesicle trafficking, and the mammalian homolog of the yeast septin protein cdc10, which is important for bud formation in yeast. Both myosin-Va and cdc10 are threefold to fivefold enriched in the PSD fraction over brain homogenates. Immunocytochemical localization of myosin-Va in cultured hippocampal neurons shows that it partially colocalizes with PSD-95 at synapses and is also diffusely localized in cell bodies, dendrites, and axons. Cdc10 has a punctate distribution in cell bodies and dendrites, with some of the puncta colocalizing with PSD-95. The results support a role for myosin-Va in transport of materials into spines and for septins in the formation or maintenance of spines

    Novel Missense Mutation A789V in IQSEC2 underlies X-Linked intellectual disability in the MRX78 family

    Get PDF
    Disease gene discovery in neurodevelopmental disorders, including X-linked intellectual disability (XLID) has recently been accelerated by next-generation DNA sequencing approaches. To date, more than 100 human X chromosome genes involved in neuronal signaling pathways and networks implicated in cognitive function have been identified. Despite these advances, the mutations underlying disease in a large number of XLID families remained unresolved. We report the resolution of MRX78, a large family with six affected males and seven affected females, showing X-linked inheritance. Although a previous linkage study had mapped the locus to the short arm of chromosome X (Xp11.4-p11.23), this region contained too many candidate genes to be analyzed using conventional approaches. However, our X-chromosome exome resequencing, bioinformatics analysis and inheritance testing revealed a missense mutation (c.C2366T, p.A789V) in IQSEC2, encoding a neuronal GDP-GTP exchange factor for Arf family GTPases (ArfGEF) previously implicated in XLID. Molecular modeling of IQSEC2 revealed that the A789V substitution results in the insertion of a larger side-chain into a hydrophobic pocket in the catalytic Sec7 domain of IQSEC2. The A789V change is predicted to result in numerous clashes with adjacent amino acids and disruption of local folding of the Sec7 domain. Consistent with this finding, functional assays revealed that recombinant IQSEC2A789V was not able to catalyze GDP-GTP exchange on Arf6 as efficiently as wild-type IQSEC2. Taken together, these results strongly suggest that the A789V mutation in IQSEC2 is the underlying cause of XLID in the MRX78 family

    An IQSEC2 Mutation Associated With Intellectual Disability and Autism Results in Decreased Surface AMPA Receptors

    Get PDF
    We have recently described an A350V mutation in IQSEC2 associated with intellectual disability, autism and epilepsy. We sought to understand the molecular pathophysiology of this mutation with the goal of developing targets for drug intervention. We demonstrate here that the A350V mutation results in interference with the binding of apocalmodulin to the IQ domain of IQSEC2. We further demonstrate that this mutation results in constitutive activation of the guanine nucleotide exchange factor (GEF) activity of IQSEC2 resulting in increased production of the active form of Arf6. In a CRISPR generated mouse model of the A350V IQSEC2 mutation, we demonstrate that the surface expression of GluA2 AMPA receptors in mouse hippocampal tissue was significantly reduced in A350V IQSEC2 mutant mice compared to wild type IQSEC2 mice and that there is a significant reduction in basal synaptic transmission in the hippocampus of A350V IQSEC2 mice compared to wild type IQSEC2 mice. Finally, the A350V IQSEC2 mice demonstrated increased activity, abnormal social behavior and learning as compared to wild type IQSEC2 mice. These findings suggest a model of how the A350V mutation in IQSEC2 may mediate disease with implications for targets for drug therapy. These studies provide a paradigm for a personalized approach to precision therapy for a disease that heretofore has no therapy

    Attractiveness of the Male Acheta domesticus Calling Song to Females - III. The Relation of Age-Correlated Changes in Syllable Period Recognition and Phonotactic Threshold to Juvenile Hormone III Biosynthesis

    No full text
    1. Most crickets first demonstrated positive phonotaxis to 65 dB CSs having a 53-62 ms SP by day 3 following the imaginal molt (Fig. 3B). The onset of copulatory readiness occurred on average at 3.2 days. 2. The attractive range of SPs for most females became progressively broader as they aged (Fig. 4). Three to 4-day-old females were attracted to a smaller number of CS SPs than were 20-21 day old females (Fig. 4). 3. Older, less selective females did not typically respond to the same range of CS SPs (Fig. 6). However, they were more likely to respond to some SPs (especially 50 ms) than to others (Fig. 7). 4. The phonotactic threshold decreased from 95 dB or greater on day 0 to a mean of 55 dB by day 3, during a period of increasing JHIII biosynthesis, and thereafter remained at that level (Fig. 8). 5. During a period of maximal JHIII production, 3-5 day-old females usually responded to 4 of the 7 SPs presented (Fig. 8). Females older than 12 days were unselective for CS SP, and JHIII synthesis remained at a level below the peak production on day 4 (Fig. 8). 6. Older females, that were unselective for CS SP, became as selective as 3 to 5-day-old females within 4 days of topical application of JHIII (Figs. 9-11). © 1991 Springer-Verlag

    Molecular modeling of ARF6 dysregulation caused by mutations in IQSEC2

    No full text
    IQSEC2 gene mutations are associated with epilepsy, autism, and intellectual disability. The primary function IQSEC2, mediated via its Sec 7 domain, is to act as a guanine nucleotide exchange factor for ARF6. We sought to develop a molecular model, which may explain the aberrant Sec 7 activity on ARF6 of different human IQSEC2 mutations. We integrated experimental data of IQSEC2 mutants with protein structure prediction by the RaptorX server combined with molecular modeling and molecular dynamics simulations. Normally, apocalmodulin (apoCM) binds to IQSEC2 resulting in its N-terminal fragment inhibiting access of its Sec 7 domain to ARF6. An increase in Ca2+ concentration destabilizes the interaction of IQSEC2 with apoCM and removes steric hindrance of Sec 7 binding with ARF6. Mutations at amino acid residue 350 of IQSEC2 result in loss of steric hindrance of Sec 7 binding with ARF6 leading to constitutive activation of ARF6 by Sec 7. On the other hand, a mutation at amino acid residue 359 of IQSEC2 results in constitutive hindrance of Sec 7 binding to ARF6 leading to the loss of the ability of IQSEC2 to activate ARF6. These studies provide a model for dysregulation of IQSEC2 Sec 7 activity by mutant IQSEC2 proteins. Communicated by Ramaswamy H. Sarma</p

    Neuronal activation increases the density of eukaryotic translation initiation factor 4E mRNA clusters in dendrites of cultured hippocampal neurons

    No full text
    Activity-dependent dendritic translation in CNS neurons is important for the synapse-specific provision of proteins that may be necessary for strengthening of synaptic connections. A major rate-limiting factor during protein synthesis is the availability of eukaryotic translation initiation factor 4E (eIF4E), an mRNA 5'-cap-binding protein. In this study we show by fluorescence in situ hybridization (FISH) that the mRNA for eIF4E is present in the dendrites of cultured rat hippocampal neurons. Under basal culture conditions, 58.7 ± 11.6% of the eIF4E mRNA clusters localize with or immediately adjacent to PSD-95 clusters. Neuronal activation with KCl (60 mM, 10 min) very significantly increases the number of eIF4E mRNA clusters in dendrites by 50.1 and 74.5% at 2 and 6 h after treatment, respectively. In addition, the proportion of eIF4E mRNA clusters that localize with PSD-95 increases to 74.4 ± 7.7% and 77.8 ± 7.6% of the eIF4E clusters at 2 and 6 h after KCl treatment, respectively. Our results demonstrate the presence of eIF4E mRNA in dendrites and an activity-dependent increase of these clusters at synaptic sites. This provides a potential mechanism by which protein translation at synapses may be enhanced in response to synaptic stimulation
    corecore