171 research outputs found

    On the Chirality of Torus Curves and Knots

    Get PDF
    As is well known, a (p, q) torus knot is topologically equivalent to a (q, p) torus knot. The sign of the writhe number, which characterizes the topological chirality, must evidently be the same in both cases. We here show by an analytic criterion related to the torsion that a (p, q) torus curve and a (q, p) torus curve have opposite chirality, although they are not enantiomer

    Globalisierung und industrielle Verflechtung – Betrachtung aus der Sicht der chemischen Industrie

    Get PDF
    No abstract

    Chirality, magnetism and light

    Get PDF
    No abstract available

    Point source generation of chiral fields:measures of near- and far-field optical helicity

    Get PDF
    To consider the relationship between different measures of chirality in an optical field, the simplest case is considered: direct spontaneous emission of circularly polarized light by a point source. In the electromagnetic fields radiated from a suitably chiral source, such as a low-symmetry chiral molecule undergoing radiative decay, optical helicity is exhibited in the extent of a difference in left- and right-handed circular polarization components. There are several practical measures for quantifying the emergence of ensuing optical helicity, exhibiting different forms of dependence on the properties of the emitter and the positioning of a detector. By casting each measure in terms of an irreducible helicity density, connections and distinctions can be drawn between results expressible in either classical or quantum form

    Intergranular penetration of liquid gold into stainless steel

    Get PDF
    Intergranular penetration of liquid 18 K gold into a superaustenitic stainless steel, which occurs during laser welding of these two materials, has been studied using a C-ring device which can be put under tensile stresses by a screw. It is shown that liquid gold at 1000 degrees C penetrates the immersed stainless steel C-ring at grain boundaries, but only when tensile stresses are applied. Based on the thickness of the peritectic phase that forms all along the liquid crack and on the transverse gold diffusion profile in steel, penetration velocities on the order of 10 mu m s(-1) are deduced. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved

    Laser induced breakdown of the magnetic field reversal symmetry in the propagation of unpolarized light

    Get PDF
    We show how a medium, under the influece of a coherent control field which is resonant or close to resonance to an appropriate atomic transition, can lead to very strong asymmetries in the propagation of unpolarized light when the direction of the magnetic field is reversed. We show how EIT can be used to mimic effects occuring in natural systems and that EIT can produce very large asymmetries as we use electric dipole allowed transitions. Using density matrix calculations we present results for the breakdown of the magnetic field reversal symmetry for two different atomic configurations.Comment: RevTex, 6 pages, 10 figures, Two Column format, submitted to Phys. Rev.

    Enhancing Optical Up-Conversion Through Electrodynamic Coupling with Ancillary Chromophores

    Get PDF
    In lanthanide-based optical materials, control over the relevant operating characteristics–for example transmission wavelength, phase and quantum efficiency–is generally achieved through the modification of parameters such as dopant/host combination, chromophore concentration and lattice structure. An alternative avenue for the control of optical response is through the introduction of secondary, codoped chromophores. Here, such secondary centers act as mediators, commonly bridging the transfer of energy between primary absorbers of externally sourced optical input and other sites of frequency-converted emission. Utilizing theoretical models based on experimentally feasible, three-dimensional crystal lattice structures; a fully quantized theoretical framework provides insights into the locally modified mechanisms that can be implemented within such systems. This leads to a discussion of how such effects might be deployed to either enhance, or potentially diminish, the efficiency of frequency up-conversion

    Quantum electrodynamics in modern optics and photonics: tutorial

    Get PDF
    One of the key frameworks for developing the theory of light–matter interactions in modern optics and photonics is quantum electrodynamics (QED). Contrasting with semiclassical theory, which depicts electromagnetic radiation as a classical wave, QED representations of quantized light fully embrace the concept of the photon. This tutorial review is a broad guide to cutting-edge applications of QED, providing an outline of its underlying foundation and an examination of its role in photon science. Alongside the full quantum methods, it is shown how significant distinctions can be drawn when compared to semiclassical approaches. Clear advantages in outcome arise in the predictive capacity and physical insights afforded by QED methods, which favors its adoption over other formulations of radiation–matter interaction
    • …
    corecore