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On the chirality of torus curves and knots
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As is well known, a (p, q) torus knot is topologically equivalent to a (q, p) torus
knot. The sign of the writhe number, which characterizes the topological chirality, must
evidently be the same in both cases. We here show by an analytic criterion related to
the torsion that a (p, q) torus curve and a (q, p) torus curve have opposite chirality,
although they are not enantiomers.
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1. Introduction

There have been various attempts to quantitatively measure chirality in the
frame of enantioselective stereochemistry [1–3]. In recent years molecules have
been discovered or synthesized that form knots and links [4–6]. In such cases one
also encounters topological chirality. The topological chirality of knots and links
has been the subject of extensive investigations [7–9]. Topological chirality is also
an important criterion in the hydrodynamic description of vortices and in inter-
preting magnetohydrodynamic phenomena [10–12].

Among simple knots, torus knots play a particular role, as they can be cre-
ated by closed curves on the surface of a torus. We wish to show by this exam-
ple that the topological chirality and the geometric chirality of a torus curve do
not necessarily coincide, and that the two different curves belonging to one and
the same knot will even have opposite geometric chirality. The conclusion to be
drawn therefrom is that the chirality of a space curve—for instance as represen-
tative of a molecular strand—must essentially be based on criteria of analytic
geometry, no matter if it forms a knot or not. If one is interested in molecu-
lar electronic and spectroscopic properties, such as CD spectra, one is in any
case obliged to base theoretical predictions on a detailed geometric structure,
and purely topological criteria are insufficient.

The parametric equations for torus curves in 3D, which may be immediately
derived from the equations for the surface of a torus, read:

27

0259-9791/07/0100-0027/0 © 2006 Springer Science+Business Media, LLC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159147495?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


28 Georges H. Wagnière / On the chirality of torus curves and knots

x(t) = (a + r cos pt) cos qt,

y(t) = (a + r cos pt) sin qt, (1)

z(t) = r sin pt.

p, q are coprime integers (with only 1 as common divisor), t is an angular
parameter. The constant integer p refers to the meridian angle, with correspond-
ing tube radius r ; the constant integer q refers to the longitudinal angle (around
the axis going through the center of the hole of the torus), with corresponding
torus radius a. In general, one assumes a � r. For t going from 0 to 2π , these
equations describe closed curves. Many of these curves display overcrossings and
undercrossings and therefore topologically correspond to knots. As is well known
[13], the minimal number of crossings c of a (p, q) torus curve or knot is given
by:

c = min{p(q − 1), q(p − 1)}. (2)

This marks the fact that a (p, q) torus knot is topologically equivalent to
a (q, p) torus knot, where in the second bracket q refers to the meridian angle
and p to the longitudinal angle. As an example, both (3, 2) and (2, 3) stand for
the trefoil knot.

2. The chirality of torus curves

We now consider torus curves from a geometric point of view. Elementary
differential geometry teaches us that space curves in 3D are characterized by
three quantities, the arc length, the curvature and the torsion. While the first
two quantities are insensitive to chirality, the torsion τ , however, changes sign
on going from a right-handed to a left-handed coordinate system. If the space
curve is expressed in the parametric form x(t), y(t), z(t), then the torsion τ is
given by [14]:

τ(t) = A(t)

B(t)
, (3)

where
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with
.
x = ∂x

∂t ,
..
x = ∂2x

∂t2 , etc. It is immediately apparent that the determinant A(t) is
a pseudoscalar quantity and that therefore it is odd under the operation of par-
ity. Thus A(t) must have opposite sign for space curves that are chiral and enan-
tiomeric. In contrast, the denominator B(t) is a true parity-even scalar. In what
immediately follows, we thus focus our attention mainly on A(t) as a character-
istic, chirality-specific quantity. For any chiral segment of a space curve (t1 − t2)
we should find:

∫ t2

t1
A(t)dt �= 0. (4)

For closed torus curves (p, q) this will be the case in the limits 0 to 2π .
The corresponding integration of (3a) is somewhat lengthy, but may be straight-
forwardly carried out with a program such as Maple. It leads to a surprisingly
simple result:

IA(p, q) =
∫ 2π

0
A(p, q; t)dt = 2pq(q4 − p4)aπ. (5)

(r in (1) is here for simplicity set = 1, and a is thus equal to the proportion of
the torus radius to the tube radius.) We immediately notice that an interchange
of p and q leads to a change of sign of the integral. This implies that a (p, q)

torus curve and a (q, p) torus curve should have opposite geometric chirality,
although they are definitely not true enantiomers. On the other hand, the corre-
sponding knots, when they exist, are topologically equivalent and must thus dis-
play the same topological chirality. For instance, assuming a = 3, we find for the
trefoil knot:

IA (3, 2) = −2340π, and IA(2, 3) = +2340π , but the sign of the writhe
number is the same in both cases. A computer visualization of torus curves and
knots demonstrates this very instructively [15, 16]. In general, a (p, 1) curve cor-
responds to a left-handed (meridian) toroidal helix, while a (1, q) curve appears
as a (longitudinal) double spiral. The outer part of the spiral has a right-handed
twist, the inner part is left-handed. Obviously, the right-handed part dominates
the integrated chirality. Similar observations are made for the knots (p, 2) and
(2, q), etc. From (5) we also conclude that the chirality integral IA(p, q) vanishes
if p = q, or if either p (and) or q are zero. Visualization [15] again confirms
this. It is furthermore found that if (p, q) are coprime, then the curve (np, nq),
where n is an integer, does not lead to an independent new curve; rather the
curve (np, nq) is geometrically equivalent to (p, q). Introducing the condition
into (5), we notice that the quantity n6may be factored out and cancelled against
the same factor in the integrated denominator B(t). If we separately integrate the
denominator B(t) from 0 to 2π , we also obtain a polynomial of order 6 in p, q,

but containing only the even exponents p6, p4q2, p2q4 and q6.
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A more comprehensive investigation of the chirality of space curves undoubt-
edly requires an examination of the torsion τ(t) itself, and not only of the par-
ity-odd numerator A(t). For torus curves, a closed-form integration

Iτ (p, q) =
∫ 2π

0
τ(p, q; t)dt. (6)

It does not appear to be straightforwardly feasible, however, and proba-
bly requires numerical integration. One will conceivably find that Iτ (p, q) and
Iτ (q, p) have opposite sign, but very probably a different absolute value. The
torus curves (p, q) and (q, p) are, as mentioned, not true enantiomers. True
enantiomers of (p, q) are given by the curves (−p, q) or (p, −q). The former
curve corresponds to a reflection of the curve (p, q) in the x, y-plane, the latter
to a reflection in the x, z-plane. It is of course evident that:

Iτ (p, q) = −Iτ (−p, q) = −Iτ (p, −q). (7)

The same holds for IA(p, q), but this is trivial.

3. Chemical and physical significance

Torus curves are a good example to illustrate the difference between topo-
logical chirality and geometric chirality. Their interest not only lies in the fact
that they form an important class of knots, but also that they are of chemical
and physical significance. In Section 1 we have already mentioned the occurrence
of torus knots in chemical structures, such as in DNA. We also recall their role
in the analysis of turbulent motion.

Another interesting manifestation of chirality related to torus curves is the
simultaneous occurrence of magnetic dipole and magnetic anapole moments in
nuclei and in atoms in which parity is violated. The anapole moment arises
through a toroidal electric current which in the presence of parity violation
becomes a helical toroidal current [17, 18], corresponding to (p, 1) torus curves.
Furthermore, the analysis of the electronic probability current in a parity-
violated atom leads to a representation related to (1, q) torus curves [18, 19].

In conclusion, the analysis of the chirality of space curves by the method
suggested in this note for torus curves, should be of general interest in the inter-
pretation of parity breaking in a number of physical and chemical phenomena.
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