1,992 research outputs found

    The rotation curves of dwarf galaxies: a problem for Cold Dark Matter?

    Full text link
    We address the issue of accuracy in recovering density profiles from observations of rotation curves of galaxies. We ``observe'' and analyze our models in much the same way as observers do the real galaxies. We find that the tilted ring model analysis produces an underestimate of the central rotational velocity. In some cases the galaxy halo density profile seems to have a flat core, while in reality it does not. We identify three effects, which explain the systematic biases: (1) inclination (2), small bulge, and (3) bar. The presence of even a small non-rotating bulge component reduces the rotation velocity. In the case of a disk with a bar, the underestimate of the circular velocity is larger due to a combination of non-circular motions and random velocities. Signatures of bars can be difficult to detect in the surface brightness profiles of the model galaxies. The variation of inclination angle and isophote position angle with radius are more reliable indicators of bar presence than the surface brightness profiles. The systematic biases in the central ~ 1 kpc of galaxies are not large. Each effect separately gives typically a few kms error, but the effects add up. In some cases the error in circular velocity was a factor of two, but typically we get about 20 percent. The result is the false inference that the density profile of the halo flattens in the central parts. Our observations of real galaxies show that for a large fraction of galaxies the velocity of gas rotation (as measured by emission lines) is very close to the rotation of stellar component (as measured by absorption lines). This implies that the systematic effects discussed in this paper are also applicable both for the stars and emission-line gas.Comment: ApJ, in press, 30 pages, Latex, 21 .eps figure

    ORS Responsive Manufacturing 6U Spacecraft

    Get PDF
    The Operationally Responsive Space Office is developing a small satellite capability and small satellite design specifically for advanced manufacturing and assembly methods for a semi-automated assembly and test facility. Designing a small satellite to be assembled and tested with this novel and innovative approach enables reduced costs, schedule, and risk. This presentation will discuss the implementation, unique design features, lessons learned, and challenges associated with developing for this new rapid-assembly capability as well as the unique benefits and challenges of assembly and test using automated, robotic systems. The presentation will also include discussions of the role that design-for-manufacturing, modular open system architecture, componentized subsystems, and standardized interfaces each play in developing the spacecraft. Assembly processes, ground support interfaces, and other assembly, integration and test needs will also be discussed

    Coherent particle production in collisions of relativistic nuclei

    Get PDF
    Here we give the results of our study of features of dense groups, or spikes, of particles produced in Mg-Mg and C-Cu collisions at, respectively, 4.3 and 4.5 GeV/c/nucleon aimed to search for a coherent, Cerenkov-like, mechanism of hadroproduction. We investigate the distributions of spike centers and, for Mg-Mg interactions, the energy spectra of negatively charged particles in spikes. The spike-center distributions are obtained to exhibit the structure expected from coherent gluon-jet emission dynamics. This structure is similar in both cases considered, namely for all charged and negatively charged particles, and is also similar to that observed recently for all-charged-particle spikes in hadronic interactions. The energy distribution within spikes is found to have a significant peak over the inclusive background, while the inclusive spectrum shows exponential decrease with two characteristic values of average kinetic energy. The value of the peak energy and its width are in a good agreement with those expected for pions produced in a nuclear medium in the framework of the Cerenkov quantum approach. The peak energy obtained is consistent with the value of the cross-section maximum observed in coincidence nucleon-nucleus interaction experiments.Comment: 8 pages, 5 figures. Invited talk presented by E.S. at the 9th International Workshop on Multiparticle Production: New Frontiers in Soft Physics and Correlations on the Threshold of the Third Millenium, Turin, Italy, June 12 - 17, 200

    Distribution of raphespinal fibers in the mouse spinal cord

    Get PDF
    Background: Serotonergic raphespinal neurons and their fibers have been mapped in large mammals, but the non- serotonergic ones have not been studied, especially in the mouse. The present study aimed to investigate the termination pattern of fibers arising from the hindbrain raphe and reticular nuclei which also have serotonergic neurons by injecting the anterograde tracer BDA into them. Results: We found that raphespinal fibers terminate in both the dorsal and ventral horns in addition to lamina 10. There is a shift of the fibers in the ventral horn towards the dorsal and lateral part of the gray matter. Considerable variation in the termination pattern also exists between raphe nuclei with raphe magnus having more fibers terminating in the dorsal horn. Fibers from the adjacent gigantocellular reticular nucleus show similar termination pattern as those from the raphe nuclei with slight difference. Immunofluorescence staining showed that raphespinal fibers were heterogeneous and serotoninergic fibers were present in all laminae but mainly in laminae 1, 2, medial lamina 8, laminae 9 and 10. Surprisingly, immunofluorescence staining on clarified spinal cord tissue revealed that serotoninergic fibers formed bundles regularly in a short distance along the rostrocaudal axis in the medial part of the ventral horn and they extended towards the lateral motor neuron column area. Conclusion: Serotonergic and non-serotonergic fibers arising from the hindbrain raphe and reticular nuclei had similar termination pattern in the mouse spinal cord with subtle difference. The present study provides anatomical foundation for the multiple roles raphe and adjacent reticular nuclei play

    Nuclear Stellar Populations in the Infrared Space Observatory Atlas of Bright Spiral Galaxies

    Full text link
    To understand the nuclear stellar populations and star formation histories of the nuclei of spiral galaxies, we have obtained K-band nuclear spectra for 41 galaxies and H-band spectra for 20 galaxies in the ISO Atlas of Bright Spiral Galaxies. In the vast majority of the subsample (80%), the near-infrared spectra suggest that evolved red stars completely dominate the nuclear stellar populations and that hot young stars are virtually non-existent. The signatures of recent star formation activity are only found in 20% of the subsample, even though older red stars still dominate the stellar populations in these galaxies. Given the dominance of evolved stars in most galaxy nuclei and the nature of the emission lines in the galaxies where they were detected, we suggest that nuclear star formation proceeds in the form of instantaneous bursts. The stars produced by these bursts comprise only ~2% of the total nuclear stellar mass in these galaxies, but we demonstrate how the nuclear stellar populations of normal spiral galaxies can be built up through a series of these bursts. The bursts were detected only in Sbc galaxies and later, and both bars and interactions appeared to be sufficient but not necessary triggers for the nuclear star formation activity. The vast majority of galaxies with nuclear star formation were classified as HII galaxies. With one exception, LINERs and transition objects were dominated by older red stars, which suggested that star formation was not responsible for generating these galaxies' optical line emission.Comment: AJ, 2004, in pres

    Large scale galactic turbulence: can self-gravity drive the observed HI velocity dispersions?

    Get PDF
    Observations of turbulent velocity dispersions in the HI component of galactic disks show a characteristic floor in galaxies with low star formation rates and within individual galaxies the dispersion profiles decline with radius. We carry out several high resolution adaptive mesh simulations of gaseous disks embedded within dark matter haloes to explore the roles of cooling, star-formation, feedback, shearing motions and baryon fraction in driving turbulent motions. In all simulations the disk slowly cools until gravitational and thermal instabilities give rise to a multi-phase medium in which a large population of dense self-gravitating cold clouds are embedded within a warm gaseous phase that forms through shock heating. The diffuse gas is highly turbulent and is an outcome of large scale driving of global non-axisymmetric modes as well as cloud-cloud tidal interactions and merging. At low star-formation rates these processes alone can explain the observed HI velocity dispersion profiles and the characteristic value of ~10 km/s observed within a wide range of disk galaxies. Supernovae feedback creates a significant hot gaseous phase and is an important driver of turbulence in galaxies with a star-formation rate per unit area >10^-3 M_sun/yr/kpc^2.Comment: 18 pages, 23 figures, MNRAS accepted. Typos and minor errors corrected. A version with high-resolution figures can be found at http://www-theorie.physik.unizh.ch/~agertz/DISK
    • …
    corecore