69 research outputs found

    Ecotoxicological assessment of ZnO nanoparticles to Folsomia candida

    Get PDF
    Straalen, N.M. van [Promotor]Gestel, C.A.M. van [Copromotor

    Effect of soil organic matter content and pH on the toxicity of ZnO nanoparticles to Folsomia candida

    Get PDF
    Organic matter (OM) and pH may influence nanoparticle fate and effects in soil. This study investigated the influence of soil organic matter content and pH on the toxicity of ZnO–NP and ZnCl2 to Folsomia candida in four natural soils, having between 2.37% and 14.7% OM and pHCaCl2pHCaCl2 levels between 5.0 and 6.8. Porewater Zn concentrations were much lower in ZnO–NP than in ZnCl2 spiked soils, resulting in higher Freundlich sorption constants for ZnO–NP. For ZnCl2 the porewater Zn concentrations were significantly higher in less organic soils, while for ZnO–NP the highest soluble Zn level (23 mg Zn/l) was measured in the most organic soil, which had the lowest pH. Free Zn2+ ion concentrations were higher for ZnCl2 than for ZnO–NP and were greatly dependent on pH (pHpw) and dissolved organic carbon content of the pore water. The 28-d EC50 values for the effect of ZnCl2 on the reproduction of F. candida increased with increasing OM content from 356 to 1592 mg Zn/kg d.w. For ZnO–NP no correlation between EC50 values and OM content was found and EC50 values ranged from 1695 in the most organic soil to 4446 mg Zn/kg d.w. in the higher pH soil. When based on porewater and free Zn2+ concentrations, EC50 values were higher for ZnCl2 than for ZnO–NP, and consistently decreased with increasing pHpw. This study shows that ZnO–NP toxicity is dependent on soil properties, but is mainly driven by soil pH

    Nanoparticles within WWTP sludges have minimal impact on leachate quality and soil microbial community structure and function

    Get PDF
    One of the main pathways by which engineered nanoparticles (ENPs) enter the environment is through land application of waste water treatment plant (WWTP) sewage sludges. WWTP sludges, enriched with Ag and ZnO ENPs or their corresponding soluble metal salts during anaerobic digestion and subsequently mixed with soil (targeting a final concentration of 1400 and 140 mg/kg for Zn and Ag, respectively), were subjected to 6 months of ageing and leaching in lysimeter columns outdoors. Amounts of Zn and Ag leached were very low, accounting for <0.3% and <1.4% of the total Zn and Ag, respectively. No differences in total leaching rates were observed between treatments of Zn or Ag originally input to WWTP as ENP or salt forms. Phospholipid fatty acid profiling indicated a reduction in the fungal component of the soil microbial community upon metal exposure. However, overall, the leachate composition and response of the soil microbial community following addition of sewage sludge enriched either with ENPs or metal salts was very similar

    Effect of different spiking procedures on the distribution and toxicity of ZnO nanoparticles in soil

    Get PDF
    Due to the difficulty in dispersing some engineered nanomaterials in exposure media, realizing homogeneous distributions of nanoparticles (NP) in soil may pose major challenges. The present study investigated the distribution of zinc oxide (ZnO) NP (30 nm) and non-nano ZnO (200 nm) in natural soil using two different spiking procedures, i.e. as dry powder and as suspension in soil extract. Both spiking procedures showed a good recovery ([85 %) of zinc and based on total zinc concentrations no difference was found between the two spiking methods. Both spiking procedures resulted in a fairly homogeneous distribution of the ZnO particles in soil, as evidenced by the low variation in total zinc concentration between replicate samples (\12 % in most cases). Survival of Folsomia candida in soil spiked at concentrations up to 6,400 mg Zn kg-1 d.w. was not affected for both compounds. Reproduction was reduced in a concentrationdependent manner with EC50 values of 3,159 and 2,914 mg Zn kg-1 d.w. for 30 and 200 nm ZnO spiked as dry powder and 3,593 and 5,633 mg Zn kg-1 d.w. introduced as suspension. Toxicity of ZnO at 30 and 200 nm did not differ. We conclude that the ZnO particle toxicity is not size related and that the spiking of the soil with ZnO as dry powder or as a suspension in soil extract does not affect its toxicity to F. candid
    • …
    corecore