55 research outputs found

    Total energy expenditure is repeatable in adults but not associated with short-term changes in body composition

    Get PDF
    Low total energy expenditure (TEE, MJ/d) has been a hypothesized risk factor for weight gain, but repeatability of TEE, a critical variable in longitudinal studies of energy balance, is understudied. We examine repeated doubly labeled water (DLW) measurements of TEE in 348 adults and 47 children from the IAEA DLW Database (mean ± SD time interval: 1.9 ± 2.9 y) to assess repeatability of TEE, and to examine if TEE adjusted for age, sex, fat-free mass, and fat mass is associated with changes in weight or body composition. Here, we report that repeatability of TEE is high for adults, but not children. Bivariate Bayesian mixed models show no among or within-individual correlation between body composition (fat mass or percentage) and unadjusted TEE in adults. For adults aged 20-60 y (N = 267; time interval: 7.4 ± 12.2 weeks), increases in adjusted TEE are associated with weight gain but not with changes in body composition; results are similar for subjects with intervals >4 weeks (N = 53; 29.1 ± 12.8 weeks). This suggests low TEE is not a risk factor for, and high TEE is not protective against, weight or body fat gain over the time intervals tested

    Energy compensation and adiposity in humans

    Get PDF
    Understanding the impacts of activity on energy balance is crucial. Increasing levels of activity may bring diminishing returns in energy expenditure because of compensatory responses in non-activity energy expenditures.1-3 This suggestion has profound implications for both the evolution of metabolism and human health. It implies that a long-term increase in activity does not directly translate into an increase in total energy expenditure (TEE) because other components of TEE may decrease in response-energy compensation. We used the largest dataset compiled on adult TEE and basal energy expenditure (BEE) (n = 1,754) of people living normal lives to find that energy compensation by a typical human averages 28% due to reduced BEE; this suggests that only 72% of the extra calories we burn from additional activity translates into extra calories burned that day. Moreover, the degree of energy compensation varied considerably between people of different body compositions. This association between compensation and adiposity could be due to among-individual differences in compensation: people who compensate more may be more likely to accumulate body fat. Alternatively, the process might occur within individuals: as we get fatter, our body might compensate more strongly for the calories burned during activity, making losing fat progressively more difficult. Determining the causality of the relationship between energy compensation and adiposity will be key to improving public health strategies regarding obesity

    Daily energy expenditure through the human life course

    Get PDF
    Total daily energy expenditure (“total expenditure”) reflects daily energy needs and is a critical variable in human health and physiology, but its trajectory over the life course is poorly studied. We analyzed a large, diverse database of total expenditure measured by the doubly labeled water method for males and females aged 8 days to 95 years. Total expenditure increased with fat-free mass in a power-law manner, with four distinct life stages. Fat-free mass–adjusted expenditure accelerates rapidly in neonates to ~50% above adult values at ~1 year; declines slowly to adult levels by ~20 years; remains stable in adulthood (20 to 60 years), even during pregnancy; then declines in older adults. These changes shed light on human development and aging and should help shape nutrition and health strategies across the life span

    Human total, basal and activity energy expenditures are independent of ambient environmental temperature

    Get PDF
    Lower ambient temperature (Ta) requires greater energy expenditure to sustain body temperature. However, effects of Ta on human energetics may be buffered by environmental modification and behavioral compensation. We used the IAEA DLW database for adults in the USA (n = 3213) to determine the effect of Ta (−10 to +30°C) on TEE, basal (BEE) and activity energy expenditure (AEE) and physical activity level (PAL). There were no significant relationships (p > 0.05) between maximum, minimum and average Ta and TEE, BEE, AEE and PAL. After adjustment for fat-free mass, fat mass and age, statistically significant (p < 0.01) relationships between TEE, BEE and Ta emerged in females but the effect sizes were not biologically meaningful. Temperatures inside buildings are regulated at 18–25°C independent of latitude. Hence, adults in the US modify their environments to keep TEE constant across a wide range of external ambient temperatures

    A Large-Scale Multi-ancestry Genome-wide Study Accounting for Smoking Behavior Identifies Multiple Significant Loci for Blood Pressure

    Get PDF
    Genome-wide association analysis advanced understanding of blood pressure (BP), a major risk factor for vascular conditions such as coronary heart disease and stroke. Accounting for smoking behavior may help identify BP loci and extend our knowledge of its genetic architecture. We performed genome-wide association meta-analyses of systolic and diastolic BP incorporating gene-smoking interactions in 610,091 individuals. Stage 1 analysis examined similar to 18.8 million SNPs and small insertion/deletion variants in 129,913 individuals from four ancestries (European, African, Asian, and Hispanic) with follow-up analysis of promising variants in 480,178 additional individuals from five ancestries. We identified 15 loci that were genome-wide significant (p <5 x 10(-8)) in stage 1 and formally replicated in stage 2. A combined stage 1 and 2 meta-analysis identified 66 additional genome-wide significant loci (13, 35, and 18 loci in European, African, and trans-ancestry, respectively). A total of 56 known BP loci were also identified by our results (p <5 x 10(-8)). Of the newly identified loci, ten showed significant interaction with smoking status, but none of them were replicated in stage 2. Several loci were identified in African ancestry, highlighting the importance of genetic studies in diverse populations. The identified loci show strong evidence for regulatory features and support shared pathophysiology with cardiometabolic and addiction traits. They also highlight a role in BP regulation for biological candidates such as modulators of vascular structure and function (CDKN1B, BCAR1-CFDP1, PXDN, EEA1), ciliopathies (SDCCAG8, RPGRIP1L), telomere maintenance (TNKS, PINX1, AKTIP), and central dopaminergic signaling MSRA, EBF2).Peer reviewe

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Daily energy expenditure through the human life course.

    Get PDF
    Total daily energy expenditure ("total expenditure") reflects daily energy needs and is a critical variable in human health and physiology, but its trajectory over the life course is poorly studied. We analyzed a large, diverse database of total expenditure measured by the doubly labeled water method for males and females aged 8 days to 95 years. Total expenditure increased with fat-free mass in a power-law manner, with four distinct life stages. Fat-free mass-adjusted expenditure accelerates rapidly in neonates to ~50% above adult values at ~1 year; declines slowly to adult levels by ~20 years; remains stable in adulthood (20 to 60 years), even during pregnancy; then declines in older adults. These changes shed light on human development and aging and should help shape nutrition and health strategies across the life span

    Physical activity and fat-free mass during growth and in later life.

    Get PDF
    BACKGROUND: Physical activity may be a way to increase and maintain fat-free mass (FFM) in later life, similar to the prevention of fractures by increasing peak bone mass. OBJECTIVES: A study is presented of the association between FFM and physical activity in relation to age. METHODS: In a cross-sectional study, FFM was analyzed in relation to physical activity in a large participant group as compiled in the International Atomic Energy Agency Doubly Labeled Water database. The database included 2000 participants, age 3-96 y, with measurements of total energy expenditure (TEE) and resting energy expenditure (REE) to allow calculation of physical activity level (PAL = TEE/REE), and calculation of FFM from isotope dilution. RESULTS: PAL was a main determinant of body composition at all ages. Models with age, fat mass (FM), and PAL explained 76% and 85% of the variation in FFM in females and males < 18 y old, and 32% and 47% of the variation in FFM in females and males ≥ 18 y old, respectively. In participants < 18 y old, mean FM-adjusted FFM was 1.7 kg (95% CI: 0.1, 3.2 kg) and 3.4 kg (95% CI: 1.0, 5.6 kg) higher in a very active participant with PAL = 2.0 than in a sedentary participant with PAL = 1.5, for females and males, respectively. At age 18 y, height and FM-adjusted FFM was 3.6 kg (95% CI: 2.8, 4.4 kg) and 4.4 kg (95% CI: 3.2, 5.7 kg) higher, and at age 80 y 0.7 kg (95% CI: -0.2, 1.7 kg) and 1.0 kg (95% CI: -0.1, 2.1 kg) higher, in a participant with PAL = 2.0 than in a participant with PAL = 1.5, for females and males, respectively. CONCLUSIONS: If these associations are causal, they suggest physical activity is a major determinant of body composition as reflected in peak FFM, and that a physically active lifestyle can only partly protect against loss of FFM in aging adults

    Energy compensation and adiposity in humans.

    Get PDF
    Understanding the impacts of activity on energy balance is crucial. Increasing levels of activity may bring diminishing returns in energy expenditure because of compensatory responses in non-activity energy expenditures.1-3 This suggestion has profound implications for both the evolution of metabolism and human health. It implies that a long-term increase in activity does not directly translate into an increase in total energy expenditure (TEE) because other components of TEE may decrease in response-energy compensation. We used the largest dataset compiled on adult TEE and basal energy expenditure (BEE) (n = 1,754) of people living normal lives to find that energy compensation by a typical human averages 28% due to reduced BEE; this suggests that only 72% of the extra calories we burn from additional activity translates into extra calories burned that day. Moreover, the degree of energy compensation varied considerably between people of different body compositions. This association between compensation and adiposity could be due to among-individual differences in compensation: people who compensate more may be more likely to accumulate body fat. Alternatively, the process might occur within individuals: as we get fatter, our body might compensate more strongly for the calories burned during activity, making losing fat progressively more difficult. Determining the causality of the relationship between energy compensation and adiposity will be key to improving public health strategies regarding obesity
    corecore