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A Large-Scale Multi-ancestry Genome-wide Study
Accounting for Smoking Behavior Identifies
Multiple Significant Loci for Blood Pressure
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Genome-wide association analysis advanced understanding of blood pressure (BP), a major risk factor for vascular conditions such as

coronary heart disease and stroke. Accounting for smoking behavior may help identify BP loci and extend our knowledge of its genetic

architecture. We performed genome-wide association meta-analyses of systolic and diastolic BP incorporating gene-smoking interac-

tions in 610,091 individuals. Stage 1 analysis examined �18.8 million SNPs and small insertion/deletion variants in 129,913 individ-

uals from four ancestries (European, African, Asian, and Hispanic) with follow-up analysis of promising variants in 480,178 additional

individuals from five ancestries. We identified 15 loci that were genome-wide significant (p < 5 3 10�8) in stage 1 and formally repli-

cated in stage 2. A combined stage 1 and 2 meta-analysis identified 66 additional genome-wide significant loci (13, 35, and 18 loci in

European, African, and trans-ancestry, respectively). A total of 56 known BP loci were also identified by our results (p < 5 3 10�8). Of

the newly identified loci, ten showed significant interaction with smoking status, but none of them were replicated in stage 2. Several

loci were identified in African ancestry, highlighting the importance of genetic studies in diverse populations. The identified loci show

strong evidence for regulatory features and support shared pathophysiology with cardiometabolic and addiction traits. They also high-

light a role in BP regulation for biological candidates such as modulators of vascular structure and function (CDKN1B, BCAR1-CFDP1,

PXDN, EEA1), ciliopathies (SDCCAG8, RPGRIP1L), telomere maintenance (TNKS, PINX1, AKTIP), and central dopaminergic signaling

(MSRA, EBF2).
Introduction

The management of blood pressure (BP) is a major public

health priority with implications for the prevention of

coronary heart disease, heart failure, stroke, and other
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vascular conditions. BP is partly under genetic control

with moderately high heritability (30%–60%),1 although

only a small fraction of the heritability has been explained

by variants identified through genome-wide association

studies (GWASs).2 Specifically, the common variants
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initially identified through three collaborative consortia

for genome-wide BP genetics in people of European

ancestry1,3,4 explain less than 2.5% of the variance in

systolic BP (SBP) or diastolic BP (DBP).4 Recent reports

based on larger sample sizes have increased the number

of BP-associated variants which together explain about

3.5% of BP variance.5–7 In contrast, only six BP loci

have been identified by GWASs in African ancestry

which explain less than 0.54% of BP variance.8,9 A focus

on main effects to the exclusion of interactions in

these studies may have limited the discovery of a full

complement of genetic influences on BP. In particular,

incorporating interactions between genetic variants and

environmental exposures (GxE) represents an additional

route for discovery of genetic effects on complex

traits,10 including BP, and may more generally extend

our knowledge of the genetic architecture of complex

traits.11

Many lifestyle factors including physical activity,

tobacco use, alcohol consumption, stress, and dietary fac-

tors influence BP.12 These lifestyle exposures may also

modify the effect of genetic variants on BP. Cigarette

smoking is known to influence BP in both acute13

and chronic14,15 fashion, motivating genetic association

studies accounting for potential gene-by-smoking interac-

tions. This may help identify BP loci, and such BP loci

driven by GxE interactions may reveal new biological in-

sights and mechanisms that can be explored for treatment

or prevention of hypertension.

The recently established Gene-Lifestyle Interactions

Working Group within the Cohorts for Heart and Aging

Research in Genomic Epidemiology (CHARGE) Con-

sortium has designed a series of multi-ancestry genome-

wide interaction projects focused on assessing the impact

of interactions with multiple lifestyle factors on the

genetics of cardiovascular traits.16 The primary goal of

these investigations is to use interactions to identify

trait loci that act synergistically with lifestyle factors.

Large-scale interaction studies like this one represent

‘‘an important milestone on the path toward a far

more complete understanding of the origins of cardio-

vascular disease and a better understanding of how

to manage it.’’17 Within this setting, we performed a

genome-wide association meta-analysis incorporating
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The Ameri
gene-smoking interactions (overview shown in Figure 1)

to identify SBP- and DBP-associated loci and under-

stand the modulating role of cigarette smoking in

the genetic architecture of BP. Here we report our

findings based on a total of 610,091 individuals from

five ancestry groups which provide adequate power for

discovery.16
Material and Methods

Overview of Participating Studies
Men and women between the ages of 18 and 80 years from five

self-reported ancestry groups are represented in this study: Euro-

pean (EUR), African (AFR), Asian (ASN), Hispanic (HIS), and

Brazilian admixed (BRA). These participating studies are described

in the Supplemental Note. Each study obtained informed consent

from participants and approval from the appropriate institutional

review boards. Although the participating studies are based on

different study designs and populations, all of them have

data on BP, smoking, and genotypes across the genome (data

imputed using the 1000 Genomes reference panel in most

cohorts). In total, this study involves two stages comprising

610,091 individuals.

A total of 48 cohorts participated in stage 1 and performed

genome-wide interaction analyses (Table S1). This stage included

80,552 EUR, 27,118 AFR, 13,438 ASN, and 8,805 HIS for an

overall total of 129,913 individuals. A total of 76 cohorts

participated in stage 2 and performed analyses of 4,459 variants

that were identified in stage 1 as either genome-wide signifi-

cant (p < 5 3 10�8) or suggestive (p < 10�6) for any of the

BP-smoking combinations for either 1 df or 2 df tests (Table

S2). This stage included 305,513 EUR, 7,786 AFR, 148,932 ASN,

13,533 HIS, and 4,414 Brazilian admixed (BRA) individuals to

a total of 480,178 individuals in stage 2. Since discoveries

to date are largely from EUR populations, we optimized the

chances of discovery in non-EUR populations (especially in

AFR) by recruiting most of the available non-EUR cohorts into

stage 1.

Phenotypes and Lifestyle Variables
The two BP traits, resting SBP (mmHg) and DBP (mmHg), were

analyzed separately. For individuals taking any anti-hypertensive

(BP-lowering) medications, their SBP and DBP values were

first adjusted for medication effects by adding 15 mmHg to

SBP and adding 10 mmHg to DBP.3 Summary statistics are

shown in Table 1 (more details in Tables S3 and S4). These
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Figure 1. Study Design and Overall
Workflow
Stage 1 analysis identified 74 significant
novel loci, of which 15 were replicated
in stage 2. Replication in stage 2 was
hampered by limited sample sizes for Afri-
can and Hispanic ancestries. Combined
analysis leverages the full power of stages 1
and 2, identifying 66 additional BP loci
missed by the 2-step approach which
were validated by FDR. Association ana-
lyses were performed for each of SBP
and DBP, accounting for two smoking
exposure variables, ‘‘current smoking’’
status (CurSmk) and ‘‘ever smoking’’ status
(EverSmk). For each ancestry, cohort-spe-
cific results were combined to perform
the 1 degree of freedom (df) test of
the interaction effect and the 2 df joint
test of genetic main and interaction
effects.
medication-adjusted BP variables were approximately normally

distributed, as shown in Table S5 and Figure S1. In addition, to

reduce the influence of possible outliers, winsorizing has been

applied for each BP value that was more than six standard devia-

tions away from the mean.

The participating cohorts have varying levels of information

on smoking, some with a simple binary variable and others

(such as UK Biobank) with more precise data. We considered

two dichotomized smoking variables, ‘‘current smoking’’ status

(CurSmk) and ‘‘ever smoking’’ status (EverSmk), as they were

the most widely available information (Table 1). Current smoking

status was coded as 1 if the subject smoked regularly in past

year (and as 0 for non-current smokers, which includes both

never and former smokers). Ever smoking status was coded as 1

if the subject smoked at least 100 cigarettes during his/her life-

time (and as 0 for the never-smokers). Smoking status was

assessed at the time of the BP measurements. When subjects

had multiple smoking measures that were inconsistent, they

were excluded from analysis. Subjects with missing data for BP,

the smoking variable, or any covariates were excluded from

analysis.

Genotype Data
Genotyping was performed using Illumina or Affymetrix genotyp-

ing arrays. Each study performed imputation to impute genotypes

for SNPs, short insertions and deletions (indels), and larger

deletions that were not genotyped directly but are available from

the 1000 Genomes Project.18 Information on genotype and

imputation for each study is presented in Tables S6 and S7. For

imputation, most studies used the 1000 Genomes Project Phase I

Integrated Release Version 3 Haplotypes (2010-11 data freeze,

2012-03-14 haplotypes), which contain haplotypes of 1,092 indi-

viduals of all ethnic backgrounds.
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Cohort-Specific GWAS Analysis
For SBP and DBP separately, each study

performed association analyses account-

ing for two smoking exposure variables,

current smoking (CurSmk) and ever smok-

ing (EverSmk). In stage 1, we considered

two models to account for gene-smoking
interactions. For the first ‘‘joint’’ model, a regression model

including both genetic main and GxE interaction effects,

E½Y j G;C� ¼ b0 þ bESmk þ bGGþ bGESmk � Gþ bCC

was applied to the entire sample. For the second ‘‘stratified’’ model,

analyses of the genetic main-effect regression models

E½Y j C; Smk ¼ 0� ¼ g
ð0Þ
0 þ g

ð0Þ
G Gþ g

ð0Þ
C C

E½Y j C; Smk ¼ 1� ¼ g
ð1Þ
0 þ g

ð1Þ
G Gþ g

ð1Þ
C C

were applied separately to the Smk ¼ 0 unexposed group and to

the Smk ¼ 1 exposed group (smokers). Y is the medication-

adjusted BP value, Smk is the smoking variable (with 0/1 coding

for the absence/presence of the smoking exposure),G is the dosage

of the imputed genetic variant coded additively (from 0 to 2),

and C is the vector of all other covariates, which include age,

sex, field center (for multi-center studies), and principal compo-

nent (PC) (to account for population stratification and admixture).

No additional cohort-specific covariates were included. Our previ-

ous work showed that the two (joint and stratified) models pro-

vided highly similar inference.19 Therefore, we considered only

the first ‘‘joint’’ model in stage 2.

Each study in stage 1 performed GWAS analysis within each

ancestry and provided (1) the estimated genetic main effect bG,

estimated interaction effect bGE, and a robust estimate of the cor-

responding covariance matrix under the joint model; and (2) esti-

mates of the stratum-specific effects g
ð0Þ
G ;g

ð1Þ
G and robust estimates

of their standard errors (SE) under the stratified model. Each study

in stage 2 provided estimates of the genetic main effect bG, the

interaction effect bGE, and robust estimates of the corresponding

covariance matrix under the joint model at 4,459 select variants.

Robust estimates of covariance matrices and SEs were used to



Table 1. Basic Characteristics of Cohorts in Stages 1 and 2 in Each Ancestry

Current Smoker Former Smoker Never Smoker

% Male % HT % HT Meds

Age SBP DBP

N % N % N % Mean SD Mean SD Mean SD

Stage 1

EUR 14,607 18.1 28,409 35.3 37,535 46.6 32.6 38.2 25.4 54.63 8.0 129.31 19.2 77.29 11.2

AFR 5,545 21.5 7,185 27.8 13,121 50.8 26.5 55.9 39.5 54.49 9.1 136.39 22.8 81.75 12.8

ASN 2,465 18.3 1,677 12.5 9,296 69.2 51.2 46.9 27.0 55.42 9.7 137.29 21.5 79.41 11.1

HIS 1,068 12.1 2,160 24.5 5,577 63.3 24.9 43.5 13.3 55.50 11.0 130.50 22.0 76.95 11.8

Stage 1 Total 23,685 18.4 39,431 30.7 65,529 50.9 32.8 43.1 27.7 54.74 8.6 131.69 20.4 78.42 11.6

Stage 2

EUR 48,198 17.0 89,597 31.6 145,914 51.4 47.8 44.8 25.0 55.91 8.6 139.02 20.4 83.76 11.5

AFR 1,971 29.8 1,579 23.8 3,075 46.4 40.9 54.3 42.8 53.66 10.2 137.00 21.6 83.32 12.8

ASN 29,485 19.8 40,850 27.4 78,597 52.8 54.9 50.3 33.1 60.76 12.3 134.92 20.2 80.01 12.3

HIS 2,739 20.3 2,559 18.9 8,231 60.8 41.0 26.9 16.3 45.86 13.8 124.08 20.0 75.09 11.9

BRZ 998 22.6 514 11.6 2,902 65.8 48.0 15.5 6.3 27.78 3.2 119.91 16.0 74.68 11.5

Stage 2 Total 83,391 18.2 135,099 29.6 238,719 52.2 49.7 45.9 27.4 56.84 9.9 137.12 20.3 82.26 11.8

TOTAL 107,076 18.3 174,530 29.8 304,248 51.9 46.1 45.3 27.4 56.40 9.6 135.96 20.3 81.44 11.7

The cell entries for the covariates and BP traits correspond to sample-size weighted averages across all cohorts in each category.
safeguard against both mis-specification of the mean model and

violation of the assumption of constant BP variance across smok-

ing groups (heteroscedasticity).20,21 Association analysis was per-

formed using various software (Tables S6 and S7). To obtain robust

estimates of covariance matrices and robust SEs, studies of

unrelated subjects used either the R package sandwich22 or

ProbABEL.23 To account for relatedness in families, family studies

used either the generalized estimating equations (GEE) approach,

treating each family as a cluster, or the linear mixed effect model

approach with a random polygenic component (for which the

covariance matrix depends on the kinship matrix).
Quality Control
Study investigators participating in this study have ample experi-

ence in main-effect-based GWASs for multiple phenotypes and are

very familiar with validated approaches for quality control (QC) of

phenotype, genotype, and imputed data. For example, cohort-

level analyses used PCs as covariates to deal with population struc-

ture; family studies used suitable software packages to deal with

relatedness (Table S6). Overlap among some of the participating

cohorts is a potential possibility. However, when there was known

overlap of samples across cohorts, one of the cohorts used a non-

overlapping sub-sample for their analysis.

We performed extensive QC using the R package EasyQC24 for

all cohort-specific GWAS results. In stage 1, each cohort provided

12 GWAS result files (2 BPs 3 2 smoking exposures 3 3 analyses,

1 for model 1 and 2 for model 2) for each ancestry group. Each

GWAS result file included approximately 8–15 million high-qual-

ity variants (depending on ancestry), as cohorts applied a prelim-

inary filter on their imputed data excluding variants with minor

allele frequency (MAF) < 1% or imputation quality measure <

0.1. We performed two QC levels: ‘‘study-level’’ and ‘‘meta-level.’’

To identify problems with population substructures or relatedness,

we have examined QQ plots and genomic control inflation factors
The Ameri
(lambdas) on a study-by-study level (to identify study-specific

issues) as well as on the meta-analysis result (to identify cross-

study issues). Because GWASs were performed within each

ancestry, the ‘‘study-level’’ QC also carefully checked the provided

allele frequencies against the retrospective ancestry-specific 1000

Genomes reference panel. Finally, marker names were harmonized

to ensure consistencies across cohorts. In addition, we contrasted

results from the joint model and stratified models in stage 1 co-

horts, as explained elsewhere.19 The ‘‘meta-level’’ QC reviewed

result files of a specific analysis (e.g., SBP-CurSmk-Model1) across

all cohorts: this included (1) visually comparing summary statis-

tics (mean, median, standard deviation, inter-quartile range, min-

imum, maximum) on all effect estimates standard errors (SEs) and

p values and (2) examining SE-N andQQplots to reveal issues with

trait transformation24 or other analytical problems. Any problems

found during QC steps, including major differences from the

ancestry-specific reference panel and any inflation of lambdas

within studies, were communicated and resolved with the individ-

ual cohorts. Similar QC steps were applied to cohort-specific re-

sults in stage 2. More detailed information about the QC steps,

including major QC problems encountered and how they were

resolved, are described elsewhere.16

The most crucial filter during the meta-analysis was approxi-

mate df ¼ min (MAC0, MAC1) * imputation quality measure;

this is based on the minor allele count (MAC) in each stratum

(MAC0 and MAC1) and imputation quality measure, where

MAC0 ¼ 2 * MAFE0 * NE0 for the unexposed group (with MAFE0
and sample size NE0 for E ¼ 0 stratum) and MAC1 ¼ 2 * MAFE1 *

NE1 for the exposed group. In meta-analysis, to exclude unstable

cohort-specific results that reflect small sample size, low MAF, or

low imputation quality measures, variants were excluded if

approximate df < 20. This filtering threshold was decided after

considering various thresholds and examining the resulting QQ

and Manhattan plots. More details are provided in the Supple-

mental Note. Variants were further excluded if imputation quality
can Journal of Human Genetics 102, 375–400, March 1, 2018 381



measure< 0.5. This value of 0.5 was used regardless of the software

used for imputation, because imputation quality measures are

shown to be similar across imputation software.25
Meta-analysis
After conducting extensive quality control and selecting high-

quality variants, approximately 18.8 million SNPs and small

insertion and deletion (indels) variants were included in the

meta-analysis (the number of variants varied across the ancestry

groups). We performedmeta-analysis using bothmodels in stage 1

and using the joint model in stage 2. For both stages, we per-

formed meta-analysis using the 1 degree of freedom (df) test of

interaction effect and 2 df tests of testing both SNPmain and inter-

action effects. Wald test statistics approximately follow either a

chi-square distribution with 1 df under H0: bGE ¼ 0 for the 1 df

test or a chi-square distribution with 2 df under H0: bG ¼
bGE ¼ 0, for the 2 df test. In the joint model, inverse-variance

weighted meta-analysis was performed for the 1 df test and the

joint meta-analysis of Manning et al.26 for the 2 df test, both using

METAL.27 In the stratified model, we performed meta-analysis us-

ing the approach of Randall et al.28 for the 1 df test and the

approach of Aschard et al.29 for the 2 df test. Both tests in the strat-

ifiedmodel were computed using the R package EasyStrata.30 More

details are described elsewhere.19

Ancestry-specific meta-analyses using inverse-variance weight-

ing were performed to combine cohort-specific results within

each ancestry. The ancestry-specific results were then combined

throughmeta-analysis to obtain evidence of ‘‘trans-ancestry’’ asso-

ciation. In stage 1, 80 separate genome-wide meta-analyses were

performed: 2 BPs 3 2 smoking exposures 3 4 (2 tests in the joint

model, 2 stratified groups in the stratified model) 3 5 ancestries

(4 ancestry-specific and 1 trans-ancestry to combine ancestry-

specific results). In this stage, genomic control correction31 was

applied twice, first for cohort-specific GWAS results if their

genomic control lambda value was greater than 1, and again after

the meta-analysis results. Variants were excluded if they were

represented by valid data in fewer than 5,000 samples and

3 cohorts. Variants that were genome-wide significant (p < 5 3

10�8) or suggestive (p < 1 3 10�6) in any of stage 1 analyses

were pursued for stage 2 analysis. In stage 2, 48 separate meta-

analyses were performed using the joint model: 2 BPs3 2 smoking

exposures 3 2 (2 tests; 1 df and 2 df tests) 3 6 ancestries

(5 ancestry-specific and 1 trans-ancestry to combine ancestry-spe-

cific results). Genomic control correction was not applied to the

replication statistics as association analysis was performed only

at select variants. Similarly, 48 separate meta-analyses were per-

formed to combine stages 1 and 2 results.
Genome-wide Significant Variants
If a variant reached genome-wide significance (p < 5 3 10�8)

through any of these 48 combined association meta-analyses

(which are not independent), then the variant was considered as

genome-wide significant. To identify a set of independent (index)

variants through ancestry-specific and trans-ancestry analysis,

we performed the linkage disequilibrium (LD)-based clumping

procedure using PLINK32 and EasyStrata.30 A locus is defined

through LD-based clumping that uses both physical distance

(51 Mb) and LD threshold of r2 > 0.1. Since valid methods do

not exist for conditional analysis involving interactions across

multi-ancestry studies, we relied on a relatively more stringent

LD threshold (r2 > 0.1) for identifying ‘‘independent’’ loci. As
382 The American Journal of Human Genetics 102, 375–400, March
LD reference, ancestry-specific 1000 Genomes Project data were

used for ancestry-specific results and the entire cosmopolitan data-

set was used for trans-ancestry results. False discovery rate (FDR)

q-values were computed using the R function p.adjust using the

step-up method by Benjamini and Hochberg.33
BP Variance Explained
Since variants weakly correlated with index variants (0.1 % r2 %

0.2) can contribute to the percent variance, for the purposes

of calculating percent variance, we carried out clumping

using slightly less conservative LD threshold (r2 > 0.2 instead

of > 0.1). The percent of variance explained in SBP and DBP by

all previously known (158) and newly identified (132 using LD

threshold of > 0.2 for clumping) variants was evaluated in several

studies from multiple ancestries (see Table S8). BP variants previ-

ously identified in any ancestry were considered as ‘‘known’’ vari-

ants. Similarly, we considered all index variants representing

previously unreported loci as ‘‘novel’’ for this purpose regardless

of which ancestry they were identified in; separate interaction

terms were included for newly identified variants. Known and

newly identified variants (combined from all ancestries) were

used in assessing the percent variance.

Percent variance was calculated using standard regression

models. Four nested models were considered. The first model

included the smoking variables and standard covariates (age,

sex, PCs, etc.); the second model included those covariates and

all known variants; the third model contained all those previous

variables and all newly identified variants (excluding any interac-

tion terms); finally, the fourth model contained all those (covari-

ates, known, and novel) plus the interaction terms. Each of SBP

and DBP was regressed on the relevant predictors in each of the

four models. The r2 values obtained from the regressions were

used as measures of the percent variance explained by the respec-

tive models. Through sequential subtraction of appropriate r2

values, we determined the ‘‘additional’’ percent variance explained

by a given set of variants. For studies with N < 20,000, we used a

stepwise regression procedure with significance tests for inclusion

of one variant at a time and for backward elimination of redun-

dant variants.
Functional Inference
Variant Effect Predictor (VEP) from Ensembl was used to obtain

the gene name for each locus. For the variants whose gene names

were not identified by VEP, NCBI SNP database was used to

obtain the closest gene. We applied several computational strate-

gies to infer biological functions associated with our newly iden-

tified loci. We used HaploReg, RegulomeDB, and GTEx34 to

obtain annotations of the noncoding genome, chromatin state,

and protein binding annotation from the Roadmap Epigenomics

and ENCODE projects, sequence conservation across mammals,

and the effect of SNPs on expression from eQTL studies. To

further assess putative functionality for the new loci, we searched

for cis associations between new variants and gene transcripts

using previously published eQTL analyses, which includes the

GTEx.34

Further eQTL evidence was queried using the eQTL database of

Joehanes et al.35 for transcripts associated in both cis and trans in

more than 5,000 individuals from the Framingham Heart Study,

with genome-wide false discovery rate (FDR) < 0.05. Two gene-

set enrichment analysis (GSEA) queries were then performed on

December 23, 2016 to determine the enrichment of biological
1, 2018



processes and disease pathways of the resulting transcripts.

Prior to the queries, duplicated gene names and genes with provi-

sional names (such as LOCXXX) were removed. Then, for each

transcript probe associated with more than one gene name, only

the first gene name was taken. This process yielded 127 gene

names for the GSEA query. For querying biological processes,

option C5:BP was selected on the GSEA website. For querying dis-

ease pathway, option C2:CP was selected. Both GSEA queries were

set at FDR < 0.05 threshold to guard against multiple comparison

errors.
Pathway and Gene Set Enrichment Analysis
We conducted four separate DEPICT analyses based on the

following criteria that were applied to our combined association

meta-analysis results. We utilized variants showing genome-wide

significant joint effect association with (1) SBP in Europeans

(PEUR.SBP < 5 3 10�8), (2) DBP in Europeans (PEUR.DBP < 5 3

10�8), (3) SBP in trans-ancestry analysis (PTrans.SBP < 5 3 10�8),

or (4) DBP in trans-ancestry analysis (PTrans.DBP < 5 3 10�8). For

each combination, DEPICT first performed the following steps to

obtain the input of the prioritization and enrichment analyses:

non-overlapping regions lists of independent variants were ob-

tained using 500 kb flanking regions and LD r2 > 0.1 using the

1000 Genomes data,18 resulting variants were merged with

overlapping genes (r2 > 0.5 with a functional coding variant

within the gene or cis-acting regulatory variant), and the major

histocompatibility complex region on chromosome 6 (base posi-

tion 25,000,000–35,000,000) was excluded.

DEPICT prioritized genes at the associated loci based on their

functional similarity. Functional similarity of genes across associ-

ated loci was quantified by computing a gene score that was

adjusted for bias through confounders such as gene length.

Experiment-wide FDR for the gene prioritization was obtained

by repeating the scoring step 50 times based on lead variants

from 500 pre-compiled null GWASs. For the gene-set enrichment

analyses, DEPICT utilized a total of 14,461 pre-compiled reconsti-

tuted gene sets comprising 737 Reactome database pathways,

2,473 phenotypic gene sets (derived from the Mouse Genetics

Initiative), 184 Kyoto Encyclopedia of Genes and Genomes

(KEGG) database pathways, 5,083 Gene Ontology database terms,

and 5,984 protein molecular pathways (derived from protein-pro-

tein interactions). For the tissue and cell type enrichment ana-

lyses, DEPICT tested whether genes harboring associated loci

are enriched for expression in any of the 209 MeSH annotations

for 37,427 microarrays of the Affymetrix U133 Plus 2.0 Array

platform.

To further identify connected gene sets and pathways impli-

cated by our findings, we performed GeneGO analysis and text

data mining using Literature Lab.36 GeneGO (known also as

MetaCore) evaluates p values for pathways by mapping a list of

target genes to each pathway and comparing those that arise by

chance using a hypergeometric distribution formula. GeneGO

implements a correction of p values using a false discovery rate.

Literature Lab of Acumenta evaluates co-occurrences in the pub-

lication records of a list of genes and biological and biochemical

terms. The analysis compares the gene input set against the

average of 1,000 randomly generated similar size sets, providing

a spectrum of statistically significant associations. Our Literature

Lab analysis included the use of 17,261,987 PubMed abstracts,

out of which 10,091,778 abstracts include one or more human

genes.
The Ameri
Results

Study Overview

We performed the traditional 2-step approach with discov-

ery in stage 1 followed by formal replication in stage 2.

Because this study was not optimally designed for replica-

tions in non-EUR (especially in AFR) ancestry, to identify

additional loci, we performed combined analysis of stages 1

and 2 tomaximize power for discovery37 (Figure 1). For the

2-step approach, we performed ancestry-specific meta-

analysis in each of five ancestries and trans-ancestry

analysis in stage 2. We checked whether each of the

genome-wide significant loci in stage 1 was replicated in

stage 2 using Bonferroni-adjusted significance level (0.05/

74, see details below). For the combined analysis, we per-

formed ancestry-specific meta-analysis combining both

stages 1 and 2 (discovery and follow-up) in each of 5 ances-

tries; these ancestry-specific meta-analyses results were

then combined to perform trans-ancestry analysis at

4,459 variants using a total of up to 610,091 individuals.
Two-Step Approach of Discovery Followed by

Replication

Of the 4,459 significant or suggestive variants selected

from stage 1 meta-analyses, 3,222 were replicated in stage

2 with p < 0.05/4,459 (to an aggregate replication rate of

72.3%). Of the 1,993 variants that were genome-wide sig-

nificant (p< 53 10�8) in stage 1 analysis, 1,836 were repli-

cated in stage 2 with p < 0.05/1,993 to a replication rate of

92.1%. These 1,993 genome-wide significant variants in

stage 1 belong to 114 independent loci. Of the 114 loci,

40 loci (consisting of 1,644 variants) contain previously

published BP variants.1,3–7 Of the remaining 74 newly

identified loci (consisting of 349 variants), 15 loci were

formally replicated in stage 2 using Bonferroni-adjusted

significance level (p < 0.05/74) (Table 2); all 15 novel

loci were replicated even when using the more conserva-

tive adjustment threshold p < 0.05/349. In addition, 25

more of the remaining 59 loci were nominally replicated

(p < 0.05) in one or more of the analyses in stage 2

(p < 0.05), and 27 more showed the same direction of

effect in stages 1 and 2. For 7 loci, no additional data

were available in stage 2 and, therefore, it was not possible

to check for replication. For the 15 formally replicated loci,

estimates of the genetic main effects were all consistent

between stages 1 and 2; estimates of SNP-smoking interac-

tion effects were not statistically significant (forest

plots; Figure S3). All of the 15 replicated loci were

genome-wide significant in European ancestry. Further-

more, 10 loci also had supporting evidence from non-Euro-

pean ancestry, resulting in stronger statistical significance

from trans-ancestry analysis (Figure S3, Table 2). Quan-

tile-quantile (QQ) plots for the genome-wide stage 1

meta-analysis are shown in Figure S2.

Of the 15 formally replicated loci, six loci (indicated by f

in Table 2) are least 1 Mb away from any previously
can Journal of Human Genetics 102, 375–400, March 1, 2018 383



Table 2. Newly Identified Loci that Are Significant in Stage 1 and Formally Replicated in Stage 2

Locusa Nearest Genesb rsID Chr:Posc EA EAF
Ancestry
and Trait Stage

Genetic Main
Effect Estd

Genetic Main
Effect SEd

Interaction
Effect Estd

Interaction
Effect SEd

2 df Joint
p Valuee

1 MTHFR;CLCN6*;NPPA rs202071545 1:11878161 d 0.945 ALL.SBP 1 1.24 0.28 �0.16 0.38 3.77 3 10�8

2 0.88 0.17 0.01 0.25 7.44 3 10�12

1þ2 0.99 0.14 �0.04 0.20 *9.39 3 10�20

2 CLCN6;NPPA;NPPB* rs3753581 1:11920189 a 0.327 ALL.SBP 1 �0.63 0.09 0.16 0.21 4.34 3 10�12

2 �0.43 0.05 0.00 0.11 5.52 3 10�23

1þ2 �0.48 0.04 0.04 0.10 *1.31 3 10�34

3 NPPA;NPPB rs72640287 1:11965792 t 0.039 EUR.SBP 1 �2.05 0.43 �0.04 0.59 1.59 3 10�10

2 �0.86 0.19 �0.33 0.28 8.19 3 10�13

1þ2 �1.06 0.18 �0.31 0.25 *2.79 3 10�21

4 WNT2B* rs351364 1:113045061 a 0.297 ALL.SBP 1 �0.60 0.10 0.53 0.22 1.67 3 10�8

2 �0.42 0.05 0.14 0.11 5.38 3 10�19

1þ2 �0.45 0.04 0.22 0.10 *1.20 3 10�26

5f CEP170;SDCCAG8*;AKT3 rs3897821 1:243420388 a 0.705 ALL.DBP 1 �0.35 0.06 0.20 0.13 2.49 3 10�9

2 �0.20 0.03 0.00 0.07 1.51 3 10�12

1þ2 �0.23 0.03 0.05 0.06 *1.67 3 10�20

6f FER1L5* rs7599598 2:97351840 a 0.564 EUR.DBP 1 �0.30 0.06 �0.15 0.14 5.93 3 10�8

2 �0.16 0.03 0.02 0.08 4.10 3 10�7

1þ2 �0.19 0.03 �0.03 0.07 *4.25 3 10�13

7 SLC4A7* rs13063291 3:27446285 a 0.204 ALL.DBP 1 0.33 0.08 0.03 0.12 4.00 3 10�8

2 0.20 0.04 �0.14 0.06 3.75 3 10�6

1þ2 0.23 0.04 �0.09 0.05 *1.67 3 10�11

8f PRAG1;MFHAS1 rs7823056 8:8382705 a 0.397 EUR.SBP 1 �0.56 0.10 �0.02 0.22 1.54 3 10�8

2 �0.42 0.05 0.16 0.13 1.55 3 10�14

1þ2 �0.45 0.05 0.10 0.11 *3.01 3 10�22

9f PPP1R3B;TNKS rs62493780 8:9151051 t 0.238 EUR.SBP 1 0.89 0.18 �0.19 0.25 3.47 3 10�8

2 0.46 0.09 �0.27 0.13 2.37 3 10�7

1þ2 0.54 0.08 �0.24 0.12 *2.95 3 10�13

(Continued on next page)
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Table 2. Continued

Locusa Nearest Genesb rsID Chr:Posc EA EAF
Ancestry
and Trait Stage

Genetic Main
Effect Estd

Genetic Main
Effect SEd

Interaction
Effect Estd

Interaction
Effect SEd

2 df Joint
p Valuee

10f MIR124-1*;MSRA rs13271489 8:9803712 t 0.478 EUR.SBP 1 0.55 0.10 0.02 0.22 6.37 3 10�8

2 0.44 0.05 �0.13 0.14 9.35 3 10�16

1þ2 0.46 0.05 �0.08 0.12 *4.56 3 10�23

11 TNNI2;LSP1*;TNNT3 rs7483477 11:1920255 t 0.75 ALL.SBP 1 �0.65 0.11 0.17 0.27 2.25 3 10�8

2 �0.36 0.05 0.08 0.12 1.77 3 10�13

1þ2 �0.40 0.04 0.09 0.11 *2.12 3 10�20

12 POC1B;ATP2B1 rs7313874 12:89965049 t 0.325 ALL.SBP 1 �0.64 0.11 0.01 0.15 1.85 3 10�14

2 �0.48 0.06 �0.23 0.09 1.07 3 10�39

1þ2 �0.52 0.05 �0.17 0.08 *2.49 3 10�54

13 ATP2B1* rs111337717 12:90037506 t 0.943 ALL.SBP 1 1.27 0.33 0.60 0.46 9.23 3 10�11

2 1.09 0.15 �0.26 0.22 2.86 3 10�18

1þ2 1.13 0.13 �0.07 0.20 *1.27 3 10�27

14 PTPN11 rs7974266 12:113007602 t 0.513 ALL.DBP 1 0.19 0.13 0.57 0.18 3.58 3 10�8

2 0.23 0.06 0.19 0.09 6.50 3 10�12

1þ2 0.22 0.06 0.28 0.08 *5.91 3 10�19

15f AKTIP;RPGRIP1L;FTO* rs11642015 16:53802494 t 0.334 ALL.SBP 1 0.57 0.09 �0.19 0.21 2.78 3 10�9

2 0.29 0.05 0.08 0.11 6.74 3 10�13

1þ2 0.35 0.04 0.03 0.10 *9.91 3 10�21

Each locus is genome-wide significant (p < 53 10�8) in stage 1 and formally replicated in stage 2 using Bonferroni-adjusted significance level (p< 0.05/74). Forest plots and LocusZoom plots are shown in Figures S3 and S4,
respectively. Abbreviations: BP, blood pressure; SBP, systolic BP; DBP, diastolic BP; EA, effect allele; EAF, effect allele frequency; 2 df joint p, p value of the joint test with 2 degrees of freedom of genetic main and interaction
effects; 1 df interaction p, p value of the interaction test with 1 degree of freedom; EUR, European ancestry; ALL, trans-ancestry (i.e., combining all ancestry groups through meta-analysis).
aEach locus was determined through LD-based clumping, using5 1 Mb around index variants, followed by LD threshold of r2 > 0.1; ancestry-specific LDs from 1000 Genomes Project were used when clumping within each
ancestry and the entire cosmopolitan data were used for trans-ancestry clumping.
bGene names were obtained using variant effect predictor (VEP) from Ensembl. Genes with intragenic index variants are indicated with an asterisk (*).
cPositions are based on build 37.
dEffect is in mmHg unit.
eThe most significant p value (between 1 df interaction test and 2 df joint test) are indicated with an asterisk (*).
fThese loci indicate ‘‘completely novel’’ loci, at least 1 Mb away from any of known BP loci.
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published BP variants, and we term them ‘‘completely

novel.’’ Three of them (near PRAG1, MIR124-1, and FTO)

show compelling biological relevance (see below) and

eQTL evidence (Figure 2). The locus zoom plots of all newly

identified loci identified in this paper are shown in

Figure S4. The remaining 9 loci are novel signals

(which meet our definition of a locus) near but not in LD

(r2 < 0.1) with known BP loci. For example, near the

well-known BP locus ATP2B1 on chromosome 12, there

were two independent signals identified in European

(p ¼ 4.1 3 10�41), Asian (p ¼ 1.5 3 10�13), and trans-

ancestry (p ¼ 2.5 3 10�54) analyses. Near another well-

known BP locus,MTHFR-NPPB-CLCN6, we identified three

additional independent signals (with p values as small as

4.3 3 10�34 at index variants, spanning 196 kb [from

11,827,796 to 12,023,500] on chromosome 1).

Combined Analysis of Stages 1 and 2

Combined meta-analysis of stages 1 and 2 identified a total

of 82 additional independent loci (p < 5 3 10�8) not iden-

tified by the 2-step approach. Association statistics for all

genome-wide significant variants in the combined meta-

analysis are provided in Table S9. Manhattan plots of the

combined meta-analysis for each BP trait using the 1 df

interaction and 2 df joint tests are shown in Figures S5–

S8. Summary Manhattan plots for SBP and DBP with the

minimum p values across all analyses are shown in

Figure S9. QQ plots are shown in Figure S10.

Of these 82 additional loci identified through combined

analysis, 16 loci contain previously published BP vari-

ants.1,3–7 All of the remaining 66 loci had a low false dis-

covery rate (FDR q value < 0.1 for all 66 loci and < 0.01

for 60 of the loci, Table S10). Of these 66 loci, 18 and 13

loci were identified through trans-ancestry (Table 3) and

European ancestry (Table 4), respectively. Except for one

locus, they were suggestive (p < 1 3 10�6) in stage 1 ana-

lyses but became significant in the combined stages 1

and 2 meta-analysis (Tables 3, 4, and 5). The strength of

the combined analysis was exemplified by a locus in

HOTTIP on chromosome 7 (locus 4 in Table 3), which

were suggestive in stage 1 analysis (p ¼ 9.4 3 10�7) and

identified through the combined analysis in European

(p ¼ 6.0 3 10�29), Asian (p ¼ 1.2 3 10�10), and trans-

ancestry (p¼ 3.63 10�41, see Figure S3). Genome-wide sig-

nificant loci from trans-ancestry analysis did not show

strong evidence of heterogeneity across ancestry groups.

Of the 66 identified loci, 35 were found through African-

ancestry only (Table 5). These loci were mostly low fre-

quency with MAF between 1% and 5% (Table 5). Of these

35 loci, 4 were genome-wide significant in stage 1 African

ancestry and stayed significant in the combined analysis

(although not formally replicated in stage 2). One such lo-

cus was near BMP7 on chromosome 20 (with p ¼ 5.8 3

10�10 in stage 1; p ¼ 0.03 in stage 2; p ¼ 4.2 3 10�12 in

stages 1þ2). Six loci were suggestive (p < 1 3 10�6) in

stage 1 analyses but became significant in the combined

stages 1 and 2 meta-analysis. One such locus was near
386 The American Journal of Human Genetics 102, 375–400, March
WSCD1 on chromosome 17 (with p¼ 8.73 10�7 in stage 1;

p ¼ 0.00047 in stage 2; p ¼ 1.83 10�10 in stages 1þ2). The

remaining 25 loci were genome-wide significant in stage 1

African ancestry but not represented in stage 2 African

ancestry due to limited sample sizes and low MAF.

Furthermore, 15 loci were African-specific loci; they had

MAF < 1% in the other ancestry groups and were filtered

out by the individual studies (by design), and therefore re-

sults are unavailable for further analysis. In the non-AFR

ancestry results, genome-wide significant variants at newly

identified loci were mostly common (withMAFR 5%) and

had similar MAF distributions as those at known loci

(Figure S10).

Known BP Loci

At most of the 56 known BP loci1,3–7 identified in the two-

step or combined analyses, the lead variant identified by

our analyses was the same as the one previously published

(Table S11); European, Asian, and trans-ancestry results

identified 48, 14, and 50 of these variants, respectively.

In the remaining loci, our results identified a variant in

the same locus as the known BP variant. The most signifi-

cant results were observed at well-known BP loci: ATP2B1

(rs17249754 on chromosome 12, trans-ancestry PSBP ¼
4.8 3 10�85; PDBP ¼ 5.5 3 10�57) and SH2B3-ATXN2

(rs3184504 on chromosome 12, trans-ancestry PSBP ¼
3.2 3 10�36; PDBP ¼ 6.0 3 10�67).

The Role of Interactions

Interaction effects contributed in varying degrees to the

evidence of association for the 81 newly reported

genome-wide significant loci (Tables 2, 3, 4, and 5). The ge-

netic effects of these new index variants (each index

variant representing a locus with the smallest p value)

were different in smokers and non-smokers, thus high-

lighting the potentially important role of interactions

(Figure 3). Among the 81 index variants, 10 variants

showed genome-wide significant interactions with smok-

ing exposure status (1 df interaction p < 5 3 10�8). All

10 of these variants, most of which were identified in

African ancestry, show larger effects on BP in smokers

(Figure 3). However, none of the interactions were repli-

cated in stage 2. In addition, of the 158 previously reported

BP variants, two (rs3752728 in PDE3A and rs3184504 in

SH2B3-ATXN2) show significant evidence of interactions

with smoking using Bonferroni correction (1 df interaction

p < 0.05/158). 27 additional variants show nominal evi-

dence of interaction (with p < 0.05).

To minimize spurious results, we winsorized extreme BP

values and used robust standard errors in cohort-specific

analyses. Moreover, since non-normality and unequal BP

variances among smokers and non-smokers can lead to

false positives, we examined these characteristics in three

large studies (ARIC, UK Biobank, andWGHS). The distribu-

tions look very similar in exposed and unexposed groups

(histograms in Figure S1). The variances across strata are

also very similar (Table S5). Moreover, on average across
1, 2018



Figure 2. Forest Plots and LocusZoom Plots for Three Newly Identified Loci
(A and B) Variant rs7823056 and 10 additional variants on chromosome 8 are an eQTL for PRAG1, which is expressed in multiple tissues
including the cerebellum and thyroid.
(C and D) Variant rs13271489 is a cis-eQTL forMSRA and predicted to modify enhancers in brain cells.MSRA has been shown to be asso-
ciated with obesity-related traits and adipocyte function; it also promotes the survival and development of dopaminergic neurons.
(E and F) Variant rs11642015 is intronic to the well-known obesity/diabetes locus FTO. In addition, AKTIP in this locus has role in telo-
mere maintenance.
Loci selected from Table 2.
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Table 3. Additional Significant Loci from the Combined Trans-Ancestry Analyses of Stages 1 and 2

Locusa Nearest Genesb rsID Chr:Posc EA EAF

Effectd p Valuee

Trait
Genetic
Main Interaction

1 df
Interaction 2 df Joint

1 NPPA;NPPB rs12741980 1:11939593 a 0.943 0.68 0.02 0.852 *3.04 3 10�14 SBP

2f RSRC1* rs201851995 3:157837508 d 0.648 �0.6 0.38 0.0016 *4.65 3 10�12 SBP

3f INPP4B;GAB1 rs78763922 4:144054552 d 0.303 0.34 0.05 0.5067 *4.03 3 10�13 SBP

4 HOTTIP* rs2023843 7:27243221 t 0.837 0.7 �0.2 0.1634 *3.69 3 10�41 SBP

5f MFHAS1*;ERI1;PPP1R3B rs201133964 8:8607849 d 0.174 �0.52 �0.16 0.4366 *1.24 3 10�9 SBP

6f PPP1R3B;TNKS rs35904419 8:9376810 d 0.816 �0.19 �0.15 0.1761 *1.34 3 10�8 DBP

7 FAM167A-AS1*;FAM167A;BLK rs4841531 8:11293390 t 0.161 �0.31 0.03 0.7825 *1.32 3 10�8 SBP

8f EBF2;LOC105379336*;
PPP2R2A;DPYSL2;ADRA1A

rs58429174 8:26011922 t 0.262 �0.12 �0.14 0.026 *2.60 3 10�9 DBP

9 ADRB1 rs180940 10:115722411 a 0.391 �0.19 0.06 0.1514 *5.00 3 10�12 DBP

10 AP5B1;OVOL1 rs201316070 11:65548558 d 0.061 �0.6 �0.23 0.462 *1.54 3 10�9 SBP

11f LRP6;GPR19;APOLD1*;
GPRC5A

rs72656645 12:12881055 a 0.7 0.36 �0.13 0.064 *4.49 3 10�15 SBP

12 SLCO1C1;SLCO1B3; SLCO1B7;
SLCO1B1

rs73073686 12:20354507 a 0.231 �0.24 �0.07 0.2553 *1.68 3 10�18 DBP

13 ATP2B1 rs10858948 12:90478651 a 0.578 �0.18 0 0.6992 *4.74 3 10�15 DBP

14 MED13L rs11067762 12:116198214 a 0.176 �0.24 �0.05 0.1951 *5.30 3 10�18 DBP

15 CYP1A1-2;ULK3;SCAMP2*;MPI rs10628234 15:75211142 d 0.3 0.32 �0.22 0.0253 *1.57 3 10�24 DBP

16f LDHD;CFDP1*;TMEM231;
TERF2IP

rs4888411 16:75443183 a 0.56 0.26 0.12 0.0467 *1.19 3 10�18 SBP

17f SLC2A4;KCTD11;TNFSF12*;
TNFSF13;ATP1B2

rs9899183 17:7452977 t 0.742 �0.35 0.07 0.6683 *1.24 3 10�12 SBP

18f ACE* rs4968782 17:61548476 a 0.616 �0.2 0.08 0.2179 *3.30 3 10�16 DBP

Each locus is genome-wide significant (p< 53 10�8) in the combined analyses of stages 1 and 2 and had FDR q value< 0.1. Forest plots and LocusZoom plots are
shown in Figures S3 and S4, respectively. Abbreviations: BP, blood pressure; SBP, systolic BP; DBP, diastolic BP; EA, effect allele; EAF, effect allele frequency; 2 df
joint p, p value of the joint test with 2 degrees of freedom of genetic main and interaction effects; 1 df interaction p, p value of the interaction test with 1 degree of
freedom.
aEach locus was determined through LD-based clumping, using 5 1 Mb around index variants, followed by LD threshold of r2 > 0.1; ancestry-specific LDs from
1000 Genomes Project were used when clumping within each ancestry and the entire cosmopolitan data were used for trans-ancestry clumping.
bGene names were obtained using variant effect predictor (VEP) from Ensembl. Genes with intragenic index variants are indicated with an asterisk (*).
cPositions are based on build 37.
dEffect is in mmHg unit.
eThe most significant p value (between 1 df interaction test and 2 df joint test) is indicated with an asterisk (*).
fThese loci indicate ‘‘completely novel’’ loci, at least 1 Mb away from any of known BP loci.
all stage 1 cohorts, skewness is 0.64 for SBP and 0.36 for

DBP; kurtosis is 3.52 for SBP and 3.32 for DBP (Table S3).

There do not seem to be substantial deviations from

normality although moderate deviations exist. Therefore,

it is less likely that the interaction effects at these 10 newly

identified loci are spurious.

BP Variance Explained

In several large cohorts, we calculated the percent of BP

variance explained by various loci across four ancestries

(Table S8). The variance explained by the 158 previously

known loci ranges from 1.1% (in HIS) to 3.2% (in EUR)

for SBP and ranges from 1.6% (in ASN and HIS) to 3.4%

(in AFR) for DBP. The additional variance explained by

the newly identified loci and their interactions ranges
388 The American Journal of Human Genetics 102, 375–400, March
from 0.6% (in EUR) to 2.6% (in AFR) for SBP and ranges

from 0.3% (in ASN) to 3.2% (in AFR) for DBP. The percent

variance explained is ideally calculated in large individual

studies which did not participate in our analysis in stage 1

or 2. However, having recruited most of the studies avail-

able to us into stage 1 or 2 (for maximizing power), we

had to use some of the same studies for this purpose and

therefore some of the variance estimates may be somewhat

inflated. In an independent EUR study (Airwave study,

N ¼ 14,002) that did not participate in stage 1 or 2, known

variants explained 1.6% of variance in SBP and DBP, and

newly identified variants and their interactions explained

1.2% variance in SBP and 1.3% variance in DBP (Table

S8). These variances are within the ranges noted, lending

credibility to the results from other studies. Note that
1, 2018



Table 4. Additional Significant Loci from the Combined Analyses of Stages 1 and 2 in European Ancestry

Locusa Nearest Genesb rsID Chr:Posc EA EAF

Effectd P valuee

Trait
Genetic
Main Interaction

1 df
Interaction 2 df Joint

1 MTHFR*;CLCN6 rs6541006 1:11857526 a 0.071 �0.85 0 0.6454 *3.17 3 *10�19 SBP

2f KCNG3;DYNC2LI1 rs73923009 2:43141074 a 0.099 �0.36 0.07 0.6165 *1.21 3 10�14 DBP

3 SLC17A1-4;HFE rs7753826 6:26042239 a 0.189 0.36 �0.05 0.4371 *1.72 3 10�25 DBP

4 SLC44A4;EHMT2*; STK19;
CYP21A2;TNXB

rs2243873 6:31863433 a 0.556 0.45 �0.19 0.0472 *3.33 3 10�14 SBP

5 SLC44A4;EHMT2; HLA-DQB2*;
STK19;CYP21A2;TNXB

rs2071550 6:32730940 a 0.307 0.29 �0.22 0.0003 *1.17 3 10�9 DBP

6f TNKS;MSRA rs4841235 8:9683358 a 0.426 0.37 �0.1 0.7078 *4.78 3 10�15 SBP

7 SOX7*;PINX1 rs6995692 8:10587008 c 0.563 �0.44 0.31 0.0102 *4.11 3 10�19 SBP

8f ADARB2* rs150155092 10:1769881 d 0.013 4.76 �18.32 *7.43 3 10�9 1.94 3 10�8 SBP

9 KAT5;RNASEH2C rs72941051 11:65478893 t 0.074 �0.39 0.07 0.3701 *1.75 3 10�11 DBP

10f FAM19A2*;AVPR1A rs17713040 12:62467714 t 0.977 0.24 0.31 0.7633 *3.44 3 10�8 DBP

11 FAM109A;SH2B3*;ATXN2 rs4375492 12:111835990 a 0.794 0.35 0.03 0.8187 *1.03 3 10�26 DBP

12 MPI;COX5A;SCAMP5 rs12050494 15:75260896 a 0.316 0.32 �0.06 0.525 *3.01 3 10�27 DBP

13f NAA38*;KCNAB3;VAMP2 rs74439044 17:7781019 t 0.903 �0.36 �0.14 0.1507 *2.43 3 10�21 DBP

Each locus is genome-wide significant (p< 53 10�8) in the combined analyses of stages 1 and 2 and had FDR q value< 0.1. Forest plots and LocusZoom plots are
shown in Figures S3 and S4, respectively. Abbreviations: BP, blood pressure; SBP, systolic BP; DBP, diastolic BP; EA, effect allele; EAF, effect allele frequency; 2 df
joint p, p value of the joint test with 2 degrees of freedom of genetic main and interaction effects; 1 df interaction p, p value of the interaction test with 1 degree of
freedom.
aEach locus was determined through LD-based clumping, using 5 1 Mb around index variants, followed by LD threshold of r2 > 0.1; ancestry-specific LDs from
1000 Genomes Project were used when clumping within each ancestry and the entire cosmopolitan data were used for trans-ancestry clumping.
bGene names were obtained using variant effect predictor (VEP) from Ensembl. Genes with intragenic index variants are indicated with an asterisk (*).
cPositions are based on build 37.
dEffect is in mmHg unit.
eThe most significant p value (between 1 df interaction test and 2 df joint test) was set in bold.
fThese loci indicate ‘‘completely novel’’ loci, at least 1 Mb away from any of known BP loci.
both known and newly identified variants (with their in-

teractions) explain some of the BP variance across ancestry

groups.

Functional Annotation and eQTL Evidence

For all 81 index variants representing the newly identified

loci, we obtained functional annotations using HaploReg38

and RegulomeDB.39 There were 2 coding variants

(1 missense and 1 synonymous). Of the remaining non-

coding variants (29 intronic and 52 intergenic), 17 are

located in promoter histonemarks, 53 in enhancer histone

marks, 29 in DNase I marks, and 10 altered the binding

sites of regulatory proteins (Table S12). Conserved among

vertebrates were 6 variants as identified via GERP40 and

5 variants via SiPhy.41 RegulomeDB assigned class 1f

(strong evidence for enhancer function) for 2 variants

(Table S12), each of which likely affects the binding of reg-

ulatory elements and is linked to expression of a gene

target. Of these, rs12741980 (locus 2, Table 4) is near the

well-known BP locusMTHFR-NPPB-CLCN6 and a cis-acting

expression quantitative trait locus (eQTL) for NPPA-AS1,

which is expressed in multiple tissues, including thyroid

and whole blood. Also, newly identified variant rs180940

(locus 10, Table 4), with RegulomeDB score of 1f, is a cis-
The Ameri
eQTL for the known locus ADRB1, an adrenergic receptor

that mediates effects of the hormone epinephrine and

the neurotransmitter norepinephrine,42 although it is

about 80 kb upstream of this locus. Of note, our results

identified this known BP locus (rs2782980, p ¼ 1.1 3

10�21 and rs1801253, p ¼ 1.3 3 10�22, in Table S11).

Among the 81 newly identified index variants, cis-eQTL

evidence was available for 39 variants with varying degrees

of association with expression probes (Table S12). In partic-

ular, 21 of them were identified by GTEx34 as cis-eQTLs

across various tissues (Table S13). However, most of them

are for cis-eQTLs that differ from their nearest assigned

genes. For example, an intronic variant in WNT2B

(rs351364) is a cis-eQTL for RHOC, which serves as a micro-

tubule-dependent signal that is required for the myosin

contractile ring formation during cell cycle cytokinesis.

Additionally, 11 variants (including rs7823056 in Figure 2)

on chromosome 8 are cis-eQTLs for PRAG1, which is ex-

pressed in multiple tissues including the cerebellum and

thyroid. The most abundant evidence of cis-eQTL associa-

tion (with 44 eQTL hits from multiple studies) was

observed for rs2243873, a intronic variant of EHMT2; it is

predicted to regulate expression of many genes including

HLA-C, HLA-B, and HLA-DRB1 across multiple tissues.
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Table 5. Additional Significant Loci from the Combined Analyses of Stages 1 and 2 in African Ancestry

Locusa Nearest Genesb rsID Chr:Posc EA EAF

Effectd p Valuee

TraitGenetic Main Interaction 1 df Interaction 2 df Joint

1f AJAP1* rs12135881 1:4781922 c 0.988 �2.05 16.94 2.06 3 10�8 *3.09 3 10�9 SBP

2f FABP3;SERINC2;TINAGL1 rs11809589 1:31970118 a 0.012 �1.11 �18.04 1.54 3 10�7 *7.71 3 10�10 SBP

3f LOC101928219 rs182662555 1:96289336 t 0.988 6.15 �4.45 0.00201 *1.79 3 10�8 DBP

4f PXDN;MYT1L* rs75247762 2:1893133 t 0.014 �2.37 �12.93 1.45 3 10�5 *1.17 3 10�9 SBP

5f ASB3;ERLEC1;GPR75 rs115234772 2:53650295 a 0.987 �0.1 8.5 2.13 3 10�9 *1.07 3 10�11 DBP

6f SERTAD2;SLC1A4 rs145162854 2:65104447 a 0.015 �3.17 �2.61 0.171 *6.63 3 10�9 SBP

7f ACOXL* rs116008367 2:111807546 c 0.014 �0.86 �5.35 5.00 3 10�5 *3.09 3 10�8 DBP

8f KCNE4;SCG2 rs10166552 2:224036537 t 0.016 �0.15 �10.83 4.28 3 10�6 *1.52 3 10�9 SBP

9f TPRA1*;MCM2 rs139963642 3:127314188 t 0.013 �6.35 1.23 0.6742 *1.55 3 10�8 DBP

10f PCDH7 rs11931572 4:30086104 a 0.968 �0.45 3.28 2.71 3 10�6 *2.91 3 10�8 DBP

11f SPRY1;LINC01091* rs62319742 4:124581262 a 0.014 1.98 �10.98 *3.43 3 10�8 4.09 3 10�8 DBP

12f HSD17B4 rs140543491 5:118923601 a 0.017 �3 �16.29 1.24 3 10�5 *5.34 3 10�9 SBP

13f OFCC1 rs148387718 6:9446000 t 0.014 0.59 �7.84 2.70 3 10�8 *1.77 3 10�11 DBP

14f NEDD9;LOC105374928* rs9348895 6:11496048 a 0.586 0.11 1.21 6.15 3 10�6 *1.71 3 10�8 DBP

15f MYO6;IMPG1* rs58806982 6:76688806 t 0.01 �11.24 14.92 1.47 3 10�5 *4.57 3 10�8 SBP

16f TARID*;SLC2A12 rs76987554 6:134080855 t 0.062 �1.57 0 0.6676 *1.63 3 10�8 SBP

17f ARID1B* rs112140754 6:157245233 t 0.988 0.97 7.6 0.00104 *2.44 3 10�8 DBP

18f BZW2* rs116196735 7:16710605 a 0.018 �2.88 �13.75 0.00037 *6.98 3 10�10 SBP

19f MED30;EXT1 rs74701635 8:118758316 t 0.016 3.79 �19.2 2.38 3 10�9 *2.13 3 10�9 SBP

20f ADAMTSL1*;MIR3152 rs146250839 9:18189778 a 0.976 0.35 2.79 0.00029 *4.36 3 10�8 DBP

21f SPIN1;S1PR3;SHC3;CKS2 rs192642798 9:91503987 a 0.012 �8.38 3.95 0.346 *4.23 3 10�9 SBP

22f FZD8 rs76726877 10:36313497 t 0.015 �1.55 �9.14 4.17 3 10�6 *4.47 3 10�10 DBP

23f SFRP5;CRTAC1* rs11599481 10:99640463 t 0.058 �0.9 �3.33 1.38 3 10�5 *4.55 3 10�11 SBP

24f TSPAN18;PRDM11;SYT13 rs148772934 11:45005681 t 0.986 �0.57 11.66 1.00 3 10�8 *1.20 3 10�9 DBP

25 SLC15A3;CD6; LOC105369325*; CD5 rs11601370 11:60834043 t 0.976 1.34 6.63 0.00867 *3.01 3 10�9 SBP

26f LOC101928944 rs74601585 11:80140007 t 0.017 �3.93 �2.58 0.2715 *8.06 3 10�9 SBP

27f LOC105369408 rs78103586 11:133893928 a 0.029 �1.65 �5.27 0.00163 *2.26 3 10�9 DBP

(Continued on next page)
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Table 5. Continued

Locusa Nearest Genesb rsID Chr:Posc EA EAF

Effectd p Valuee

TraitGenetic Main Interaction 1 df Interaction 2 df Joint

28f PLEKHG7;EEA1;LOC643339* rs61935525 12:93645481 c 0.985 1.26 10.15 3.28 3 10�7 *3.28 3 10�11 DBP

29f DICER1;CLMN rs187852559 14:95794914 a 0.013 �1.67 �4.93 0.0246 *8.74 3 10�10 DBP

30f SETD3;CCNK rs1257310 14:99810427 a 0.784 1.03 0.98 0.1335 *1.67 3 10�8 SBP

31 GPR139;GP2;UMOD;PDILT rs148753653 16:20230175 a 0.981 5.25 �9.4 *1.89 3 10�8 6.30 3 10�8 DBP

32f LOC339166*;WSCD1 rs138973557 17:5699720 t 0.903 0.36 2.09 2.12 3 10�8 *1.81 3 10�10 DBP

33f DYM;LIPG;ACAA2;MYO5B rs9965695 18:47261614 t 0.982 0.29 13.32 8.36 3 10�6 *1.63 3 10�8 SBP

34f ZNF98* rs10405764 19:22598479 t 0.017 0.91 �19.1 2.13 3 10�7 *4.30 3 10�8 SBP

35f BMP7 rs115893283 20:55404165 t 0.042 0.9 �9.05 2.53 3 10�8 *4.24 3 10�12 SBP

Each locus is genome-wide significant (p < 53 10�8) in the combined analyses of stages 1 and 2 and had FDR q value < 0.1. Forest plots and LocusZoom plots are shown in Figures S3 and S4, respectively. Abbreviations: BP,
blood pressure; SBP, systolic BP; DBP, diastolic BP; EA, effect allele; EAF, effect allele frequency; 2 df joint p, p value of the joint test with 2 degrees of freedom of genetic main and interaction effects; 1 df interaction p, p value of
the interaction test with 1 degree of freedom.
aEach locus was determined through LD-based clumping, using5 1 Mb around index variants, followed by LD threshold of r2 > 0.1; ancestry-specific LDs from 1000 Genomes Project were used when clumping within each
ancestry and the entire cosmopolitan data were used for trans-ancestry clumping.
bGene names were obtained using variant effect predictor (VEP) from Ensembl. Genes with intragenic index variants are indicated with an asterisk (*).
cPositions are based on build 37.
dEffect is in mmHg unit.
eThe most significant p value (between 1 df interaction test and 2 df joint test) is indicated with an asterisk (*).
fThese loci indicate ‘‘completely novel’’ loci, at least 1 Mb away from any of known BP loci.
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Figure 3. Scatterplots of Smoking-Spe-
cific Genetic Effect Sizes for BP Traits at
the 15 Newly Identified and 66 Putative
Index Variants Listed in Tables 2, 3, 4,
and 5
The red points show variants with 1 df
interaction p < 5 3 10�8 (1 ¼ rs12135881;
2 ¼ rs115234772; 3 ¼ rs62319742;
4 ¼ rs148387718; 5 ¼ rs74701635;
6 ¼ rs150155092; 7 ¼ rs148772934;
8 ¼ rs138973557; 9 ¼ rs115893283; 10 ¼
rs148753653). The blue points show vari-
ants with 1 df interaction p < 1 3 10�5

(11 ¼ rs11809589; 12 ¼ rs10166552; 13 ¼
rs11931572; 14 ¼ rs9348895; 15 ¼
rs76726877; 16 ¼ rs61935525; 17 ¼
rs9965695; 18¼ rs10405764).
Themajority of the available data on tissue expression are

derived from studies with a breadth of tissue types but with

small sample sizes that limit the statistical power to detect

association. A more in-depth but single-tissue functional

annotation, reporting both cis- and trans-acting elements,

was recently performed using microarray-based gene and

exon expression levels in whole blood from more than

5,000 individuals of the Framingham Heart Study.35 In

this database, a total of 170 variant-transcript pairs (repre-

senting 36 variants) were significant at false discovery rate

(FDR) < 0.05 (Table S14). There were 113 pairs for cis-

eQTL, 3 pairs for trans-eQTL, and 54 pairs for long-range

cis-eQTL where the variant is located more than 1 Mb

away from the target transcript on the same chromosome.

Among 36 variants, 9 variants were eQTLs for more than

5 gene transcripts. For example, the 4 SNPs with the most

significant eQTL evidence were rs2243873 (described in

the previous paragraph), rs2071550, rs7823056, and

rs13271489 (locus 8 in Table 2 and Figure 2) associated

with 29, 12, 11, and 10 transcripts, respectively.

Pathway and Gene Set Enrichment Analysis

In order to distinguish between functional properties of

loci with SBP compared to DBP effects, as well as between

European-specific and trans-ancestry mechanisms, we

conducted gene prioritization, gene set enrichment, and

tissue enrichment analyses using DEPICT43 separately by

the four combinations of ancestry (EUR versus trans-
392 The American Journal of Human Genetics 102, 375–400, March 1, 2018
ancestry) and BP trait (DBP versus

SBP; Material and Methods, Tables

S15–S20). DEPICT significantly priori-

tized genes (FDR < 5%) at 12 Euro-

pean DBP loci, 26 European SBP loci,

34 trans-ancestry DBP loci, and 27

trans-ancestry SBP loci (Tables S15–

S19). In 43 cases, the prioritized gene

for a specific locus differed from the

nearest gene of the lead variant. Our

DEPICT gene-set enrichment analyses

highlighted a role for the identified
variants in the cardiovascular system—predominantly

affecting blood vessel biology (FDR < 0.05 for a total of

134 gene-sets across the four analyses, Table S20).

To identify connected gene sets and pathways implicated

by our findings, we performed GeneGO analysis and text

dataminingusing Literature Lab.36 The genesnear our find-

ings were enriched by GeneGO disease class ‘‘chronic kid-

ney failure’’ (p ¼ 9.2 3 10�6). These same genes were also

included in the much larger network representing the

GeneGO disease class ‘‘fibrosis’’ (p ¼ 3.393 10�7), suggest-

ing that genetic contribution of chronic kidney disease to

BP is likely mediated by fibrosis. With Literature Lab, for

the ‘‘diseases’’ medical subject heading (MeSH), hyperten-

sionwas strongly enriched (p¼0.0011), with contributions

fromACE (93.4%),MTHFR (2.12%), ATP2B1 (1.18%),NPPB

(0.54%), SH2B3 (0.43%), and SLC4A7 (0.13%). For the

‘‘physiology’’ MeSH, blood pressure and cardiovascular

physiological phenomena were enriched. Blood pressure

(p ¼ 0.0026) had contributions from ACE (96.77%),

ATP2B1 (1.16%), NPPB (0.6%), MTHFR (0.46%), SH2B3

(0.46%), and FTO (0.3%). Cardiovascular physiological

phenomena (p ¼ 0.0056) had contributions from ACE

(97.89%), NPPB (1%), ATP2B1 (0.37%), MTHFR (0.2%),

SH2B3 (0.16%), TNFSF12 (0.09%), and AP5B1 (0.05%).

Associations of BP Loci with Cardiometabolic Traits

To test association of all 81 newly identified BP-associated

index variants with other cardiometabolic traits, we



obtained lookup results for coronary artery disease (CAD),

stroke, and other cardiometabolic traits related to

adiposity, diabetes, and renal function (Tables S21–S27).

We found that several of our newly identified index

variants corroborate those previously associated with

these cardiometabolic traits. To quantify this, we

counted the number of variants that show association

with p value < 0.05 (highlighted in red). In the vast

majority of cases (39 out of 47, PBinomial ¼ 2.8 3 10�6),

the observed count is higher than that expected by

chance alone (Table S27). For example, we observed 9

and 14 such associations with CAD and myocardial

infarction, respectively, where the expected count is 2.6

for both traits. This is consistent with the known associa-

tion of increased BP with CAD mortality, independent of

other risk factors.44 Likewise, overlapping signals with

other cardiometabolic traits, including those related to

adiposity, diabetes, and renal function, support the

notion that these traits share a common pathophysiology.

For many of the obesity-related trait associations found in

the GIANT Consortium, the genetic effect was influenced

by adjustment and/or stratification by smoking status45

(Table S26).

We also found corroborating evidence for some well-

known loci associated with the renin-angiotensin-

aldosterone system (RAAS), including NPPA, NPPB, and

SLC17A1-4 (Tables 2, 3, and 4).4 Variants in and near

these loci have also been associated with CAD-related

traits (NPPA/NPPB; Table S21), stroke (NPPA/NPPB and

SLC17A1-4; Table S22), obesity-related traits (NPPA/NPPB

and SLC17A1-4; Table S23), and diabetes-related traits

(SLC17A1-4; Table S24) The confluence of these data pro-

vide further evidence of the biologic relevance of these

loci to BP regulation and the shared pathophysiology

among cardiometabolic traits.

Biological Relevance of Newly Identified Variants

Associated with BP

Ciliopathies

Cilia are cellular protuberances found in several tissues

including the kidney and brain that serve several purposes

including cellular structure, growth, mobility, secretion,

and environmental response. New BP candidate genes

SDCCAG8 (locus zoom plot in Figure 2), RPGRIP1L, and

TMEM231 encode products that play critical roles in

the structure and function of primary cilia including

microtubules, basal bodies, and centrosomes. Mutations

in these genes can lead to nephronophthisis-related cili-

opathy, a monogenic cause of end-stage renal disease.

DPYSL2, which encodes a microtubule assembly pro-

tein, has also been implicated in polycystic kidney

disease.46 Cilia also contain actin fibers with motor pro-

teins (dynein and kinesin) responsible for the transport

of mitochondria and other cargo. DYNC2LI1 is another

dynein-associated protein associated with BP; dynein pro-

teins co-localize in the kidney with the water channel

aquaporin-2.47
The Ameri
Telomere Maintenance

Since telomere length shortens with successive cell divi-

sions, it has been proposed as a reflection of biologic

age.48 Several genes with significant association with BP

have roles in telomere maintenance including TNKS,

PINX1, AKTIP (Tables 2, 3, and 4), and TERF2IP. TNKS,

which is in a locus previously associated with stroke-,

obesity-, and diabetes-related traits in other studies (Tables

S22–S24), plays a role in the insulin-stimulated transloca-

tion of GLUT4 (glucose transporter) to the plasma

membrane49 and has additionally been associated with

cardiovascular disease (CVD) risk and the inflammatory

biomarker, C-reactive protein.50 PINX1 has been previ-

ously associated with CVD,51 carotid artery intima-media

thickness,52 and serum triglyceride levels,53 and has also

been associated with obesity- and diabetes-related traits

(Tables S23 and S24). AKTIP has been previously associated

with stroke-related traits in other studies (Table S22).

Of note, the association at TNKS, PINX1, and AKTIP

with multiple adiposity traits in the GIANT Consortium

were strengthened by adjustment for smoking status

(Table S26). TERF2IP has also been associated with

stroke risk50 and coronary artery disease traits (Tables S21

and S22).

Central Dopaminergic Signaling

Dopaminergic signaling in the kidney is known to modu-

late the secretion of renin54 and other key regulators of

salt-water balance.55 There is evidence that central dopa-

mine signaling also modulates BP via mechanisms that

are independent of changes in sodium excretion.56 Early

stages of Parkinson disease, a neurodegenerative disorder

characterized by the loss of dopamine-secreting neurons,

is characterized by autonomic dysfunction and BP

dysregulation.57 In the current study, genes involved in

central dopamine signaling were associated with BP,

including MSRA and EBF2, which promote the survival

and development of dopaminergic neurons, and GPR19,

a G-protein coupled receptor for the dopamine D2 receptor.

MSRA has been previously associated with body mass in-

dex after adjustment with smoking status in the GIANT

Consortium (Table S26) and GPR19 with renal function

(Table S25) in the COGENT-Kidney Consortium.

Modulators of Vascular Structure and Function

CDKN1B, BCAR1-CFDP1, PXDN, and EEA1 are involved in

pathways that contribute to angiotensin II-induced

vascular hypertrophy. Notably, the association of PXDN

and EEA1 with BP is limited to AFR. CDKN1B has been

previously associated with renal function (Table S25).

BCAR1-CFDP1 has furthermore been identified as a

genome-wide significant locus for carotid artery intima-

media thickness and coronary artery disease risk (also Table

S21);58 a potential causal variant in a BCAR1 regulatory

domain has been identified.59 KCNG3 and KCNE4 are sub-

unit modifiers of voltage-gated potassium channels

expressed in vascular smooth muscle cells; activation of

these channels leads to vasodilation. AVPR1A, which was

associated with BP in AFR only, is a receptor for the
can Journal of Human Genetics 102, 375–400, March 1, 2018 393



vasoconstrictor vasopressin; murine knock-out models are

hypotensive with impaired baroreceptor reflexes.60
Discussion

This is a large-scale multi-ancestry study to systematically

use GxE interactions for identifying trait loci and for eval-

uating the role of GxE interactions in cardiovascular traits.

In stage 1, we performed a genome-wide analysis of gene-

smoking interactions in 129,913 individuals across four

ancestry groups using 1000 Genomes-imputed data, with

follow-up analysis in stage 2 of a small set of promising var-

iants in 480,178 additional individuals across five ancestry

groups. We identified 40 known BP loci at genome-wide

significance level (p < 5 3 10�8) in stage 1 as well as 15

novel loci that are genome-wide significant in stage 1

and replicated in stage 2 using Bonferroni correction.

A combined meta-analysis of stages 1 and 2 results yielded

16 additional known BP loci and 66 additional genome-

wide significant loci (p < 5 3 10�8); 13, 35, and 18 loci

were identified in European, African, and trans-ancestry,

respectively. These 66 additional loci were validated with

low false discovery rate (FDR q value< 0.1) (e.g., see Nelson

et al.61).

Identification of novel loci in this GxE analysis demon-

strates the importance of incorporating environmental

exposures in association discovery. Our newly identified

loci including interactions with smoking collectively ex-

plained up to 1.7% additional variance in BP (beyond

that explained by known BP variants) in several European

cohorts. Furthermore, it may be particularly striking

that our analyses also identified VAMP2, a component of

the renin-angiotensin-aldosterone system (RAAS), as a

likely mediator of hypertension. VAMP2 modulates

cAMP-stimulated renin release by renal juxtaglomerular

cells62 but has not been previously identified, even

though other components of RAAS including NPPA,

NPPB, and SLC17A1-4 have been found in previous

GWASs and, indeed, among the 56 known BP loci identi-

fied in our study.4,63–65

Several of our newly identified BP loci show evidence for

shared pathophysiology with cardiometabolic traits. This

is encouraging as hypertension is a frequent comorbidity

of a variety of cardiometabolic traits, including dyslipide-

mia, type 2 diabetes, obesity, and other disorders of sub-

strate metabolism and storage. XKR6-MIR598 andMFHAS1

have been associated with serum triglyceride levels.66

LRP667,68 and PPP1R3B69 have been associated with serum

low-density lipoprotein levels and the metabolic syn-

drome. MSRA70 and SERTAD271 (associated in AFR) have

been associated with obesity-related traits and adipocyte

function, and PPP1R3B has been associated with steatohe-

patitis.72 We also identified the well-known obesity/

diabetes locus FTO73,74 as a newly identified BP locus

(Figure 2). In addition to a recent discovery of the effect

of an FTO variant on IRX3 and IRX5,75 variants in intron
394 The American Journal of Human Genetics 102, 375–400, March
1 of FTO have been identified that regulate the expression

of nearby RPGRIP1L,74 shown to modulate leptin receptor

trafficking and signaling in the hypothalamus.76 Variants

in and near XKR6-MIR598, MFHAS1, MSRA, and FTO

have been associated with obesity- and diabetes-related

traits in other studies (Tables S23 and S24). Among other

variants in genes related to cardiometabolic traits, VAMP2

plays a role in the trafficking of the GLUT4 glucose recep-

tor to the adipocyte plasma membrane.77 Finally, we iden-

tified a SNP (in AFR) in FABP3, a gene known to regulate

mitochondrial b-oxidation.78 Studies have shown that

serum FABP3 transcript and protein levels are elevated in

animal models and humans with hypertension compared

with normotensive controls.79,80 Consistent with a recent

paper,6 our findings provide additional BP variants over-

lapping with metabolic trait loci.

Some of the newly identified BP loci have been previ-

ously reported as suggestive (but not genome-wide signifi-

cant) for smoking and other addiction traits. Among our

newly identified loci, FTO, DPYSL2-ADRA1A, AJAP1, and

SERINC2 have shown suggestive evidence of association

with smoking-related traits,81,82 illicit drug use,83 and

alcohol consumption and dependence.84,85 In addition,

dopaminergic signaling has been implicated in addictive

behaviors.86 Moreover, located in an intron of TNFSF12

(tumor necrosis factor superfamily member), our newly

identified variant rs9899183 has many compelling regula-

tory features supporting its candidacy (Table S12); it resides

in a region characterized by promoter histone marks in 23

tissues, in enhancer histone marks in 7 tissues, and by

DNase marks in 12 tissues. This variant is also identified

as an eQTL for genes TNFSF12, CHRNB1, and SAT2;

CHRNB1 (1 nicotinic acetylcholine receptor subunit) may

also contribute to nicotine dependence.87

BP regulation critically involves both central and periph-

eral regulation via neuroendocrine and hormonal regula-

tion in a complex integrated system that includes the

brain, kidneys, adrenal glands, and vasculature. In addi-

tion to validating loci known for their involvement in

the RAAS system, natriuretic peptide signaling, solute

channels, and adrenergic and cholinergic receptor sig-

naling (among others), we identified variants in or near

new biological candidates for BP regulation. For example,

several of our newly identified loci identified genes that

have been previously implicated in monogenic causes

of ciliopathy (nephronophthisis-related ciliopathy), a

cause of end-stage renal disease in children and young

adults.88,89 This condition is a genetically heterogeneous

autosomal-recessive disease, and heterozygote siblings

and other adults with incompletely penetrant versions of

this disease may have variable degrees of hypertension,

renal insufficiency, obesity, and diabetes.90 Newly identi-

fied loci also include genes involved in dopaminergic

signaling which may act both centrally and in the kidney

to modulate BP regulation. Still other newly identified

loci reside in or near genes involved in telomere

maintenance.
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Of the 81 newly identified loci, 10 show genome-wide

significant interactions although none were replicated in

stage 2. Nine were identified with current smoking status.

The ever smoking status is more heterogeneous since the

effect of (former) smoking on BP decays over time from

cessation.91 It is therefore not surprising that the analyses

with the more homogeneous current smoking (CurSmk)

status yielded larger (and more robust) effects on BP than

did analyses using ever smoker (EverSmk) status. Although

the joint 2 df test succeeded in identifying 71 of the 81

newly identified loci, the precise role of interaction is un-

clear. It is sobering to note that, although gene-smoking in-

teractions may have helped identify a reasonably large

number of the newly identified loci, the sample size we

used here for genome-wide analysis in stage 1 appears

inadequate for identifying a large number of interaction ef-

fects (should they exist) through the 1 df interaction test

alone. This may be because, if the pathobiology of BP in-

volves large numbers of interactions, the majority of the

interaction effects are likely (relatively) small enough

whose identification requires the 2 df joint test and/or

require much larger sample sizes for identifying them

through the 1 df interaction test. Moreover, smoking is

only one of many lifestyle attributes that may have inter-

action effects on BP.12 It is possible that some interactions

we report here are driven by other lifestyle factors that may

be correlated with smoking. A follow-up study (such as

Young et al.92 and Tyrrell et al.93) that jointly examines

multiple lifestyle factors can shed light on further under-

standing of interaction effects on BP.

Several large consortia-based BP GWAS papers have been

published in recent years, dramatically increasing the

number of BP loci. We treated 158 as known BP loci, which

included the 71 loci that were reported by three recent

papers.5–7 Of the 56 known BP loci we identified, 8 overlap

with these newly identified 71 loci. Hoffmann et al.94 re-

ported 75 novel loci (and 241 additional loci not validated)

based on >300,000 individuals. The use of repeated mea-

surements, beside the large sample size, appears to be

responsible for the large number of novel loci discovered.

Their study demonstrates the power of large sample sizes

and repeated measurements. Warren et al.95 reported 107

validated loci. As shown in Table S28 in detail, nine of

our newly identified loci include variants reported by these

two papers.94,95 Based on African ancestry, Liang et al. re-

ported three validated BP loci,96 one of which overlaps

with our newly identified loci.

35 loci were identified in African ancestry meta-analyses.

As previous discoveries of BP loci were mostly in European

ancestry, some using very large sample sizes, it may be

harder to detect newly identified signals in European

ancestry in our study. There are also more opportunities

to identify lower frequency variants in African ancestry

meta-analysis because there are more of these variants

in this genetically more diverse population. However,

because of the highly limited sample sizes available for

African ancestry in stage 2, genome-wide significant loci
The Ameri
in stage 1 African ancestry could not be formally replicated

in stage 2. Nevertheless, there is evidence supporting the

validity of many of the African-specific newly identified

loci: African-specific QQ plots were very similar with and

without the known BP loci (Figures S10 and S12). Genomic

control values are all close to 1, and the top signals are

away from the expected null line in the QQ plots, suggest-

ing that these may be real associations. Forest plots at the

African-specific loci (Figure S13) were not heterogeneous

across cohorts. For most loci, there exists at least one

non-African ancestry showing effects in the same direction

as those in African ancestry. They may also relate at least in

part to unique smoking behaviors or BP regulation or both

in African ancestry. However, these African-specific loci

require further validation.

There are several limitations in this large-scale multi-

ancestry genome-wide investigation incorporating gene-

smoking interactions. First, main effect only analysis

without regard to smoking was not performed, and this

limits our ability to resolve whether any of our loci newly

identified through the 2 df joint test could be found

without smoking or gene-smoking interaction in the

model. Second, although the strategy of clumping with a

stringent LD threshold (r2 > 0.1) in addition to large phys-

ical distance threshold (51 Mb) is reasonable for inferring

independent loci, conditional analysis of summary statis-

tics from interaction analysis (similar to GCTA) would be

more rigorous; however, such methods do not exist

currently. Third, the relatively smaller stage 2 sample sizes

available in African and Hispanic ancestries limit our abil-

ity to formally replicate the loci that were newly identified

in stage 1 in those ancestries (including the 10 interac-

tions). Fourth, power for discovery using interactions

may be limited even in this reasonably large sample size.

Fifth, if there is a G-C correlation, a potential confounding

of GxE with interaction between covariate and smoking

exposure (CxE) may exist, which can inflate type I error

of the GxE interaction test;97,98 using a stratified model

may help overcome such confounding. Sixth, our use of

the fixed effect meta-analysis for trans-ancestry analysis

may have limited the power in the presence of heteroge-

neous effects across ancestries; however, specialized

trans-ancestry methods for GxE interactions do not exist.

Seventh, subjects were grouped into each ancestry based

on self-reported information instead of genetically

computed ancestry. Finally, the use of multiple hypothesis

tests, multiple phenotypes and exposures, and multiple

ancestries may contribute to inflation at some level. Strik-

ing a balance between false positives and false negatives,

especially in the context of interactions, remains a

challenge.

In summary, our study identified a total of 137 genome-

wide significant loci; 56 known loci, 15 new loci identified

in stage 1 and formally replicated in stage 2, and 66 addi-

tional BP loci identified through the combined analysis

of stages 1 and 2 and validated through low FDR. Our

ability to identify this many loci is likely due to four
can Journal of Human Genetics 102, 375–400, March 1, 2018 395



factors: focus on gene-smoking interactions, consideration

ofmultiple ancestries, the large aggregate sample sizes avail-

able, and the densely imputed data using the recent 1000

Genomes Project reference panel in stage 1 analysis. The

10 newly identified loci with significant interactions

showed larger effects on BP in smokers. 35 loci were identi-

fied only in African ancestry, highlighting the importance

of pursuing genetic studies in diverse populations. In addi-

tion to evidence for shared pathophysiology with cardio-

metabolic traits, smoking, and other addiction traits, our

results provide compelling evidence for biological candi-

dates for BP regulation such asmodulators of vascular struc-

ture and function, ciliopathies, telomeremaintenance, and

central dopaminergic signaling. Our findings demonstrate

how the interplay between genes and environment can

help identify loci, open up new avenues for investigation

about BP homeostasis, and highlight the promise of gene-

lifestyle interactions for more in-depth genetic and envi-

ronmental dissection of BP and other complex traits.
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