1,495 research outputs found

    Polymer Dissolution Model: An Energy Adaptation Of The Critical Ionization Theory

    Get PDF
    The current scale of features size in the microelectronics industry has reached the point where molecular level interactions affect process fidelity and produce excursions from the continuum world like line edge roughness (LER). Here we present a 3D molecular level model based on the adaptation of the critical ionization (CI) theory using a fundamental interaction energy approach. The model asserts that it is the favorable interaction between the ionized part of the polymer and the developer solution which renders the polymer soluble. Dynamic Monte Carlo methods were used in the current model to study the polymer dissolution phenomenon. The surface ionization was captured by employing an electric double layer at the interface, and polymer motion was simulated using the Metropolis algorithm. The approximated interaction parameters, for different species in the system, were obtained experimentally and used to calibrate the simulated dissolution rate response to polymer molecular weight and developer concentration. The predicted response is in good agreement with experimental dissolution rate data. The simulation results support the premise of the CI theory and provide an insight into the CI model from a new prospective. This model may provide a means to study the contribution of development to LER and other related defects based on molecular level interactions between distinct components in the polymer and the developer.Chemical Engineerin

    Photobase Generator Enabled Pitch Division: A Progress Report

    Get PDF
    Pitch division lithography (PDL) with a photobase generator (PBG) allows printing of grating images with twice the pitch of a mask. The proof-of-concept has been published in the previous paper[1, 2] and demonstrated by others[1]. Forty five nm half-pitch (HP) patterns were produced using a 90nm HP mask, but the image had line edge roughness (LER) that does not meet requirements. Efforts have been made to understand and improve the LER in this process. Challenges were summarized toward low LER and good performing pitch division. Simulations and analysis showed the necessity for an optical image that is uniform in the z direction in order for pitch division to be successful. Two-stage PBGs were designed for enhancement of resist chemical contrast. New pitch division resists with polymer-bound PAGs and PBGs, and various PBGs were tested. This paper focuses on analysis of the LER problems and efforts to improve patterning performance in pitch division lithography.Chemical Engineerin

    Polymer Bound Photobase Generators And Photoacid Generators For Pitch Division Lithography

    Get PDF
    The semiconductor industry is pursuing several process options that provide pathways to printing images smaller than the theoretical resolution limit of 193 nm projection scanners. These processes include double patterning, side wall deposition and pitch division. Pitch doubling lithography (PDL), the achievement of pitch division by addition of a photobase generator (PBG) to typical 193 nm resist formulations was recently presented. 1 Controlling the net acid concentration as a function of dose by incorporating both a photoacid generator (PAG) and a PBG in the resist formulation imparts a resist dissolution rate response modulation at twice the frequency of the aerial image. Simulation and patterning of 45 nm half pitch L/S patterns produced using a 90 nm half pitch mask were reported. 2 Pitch division was achieved, but the line edge roughness of the resulting images did not meet the current standard. To reduce line edge roughness, polymer bound PBGs and polymer bound PAGs were investigated in the PDL resist formulations. The synthesis, purification, analysis, and functional performance of various polymers containing PBG or PAG monomers are described herein. Both polymer bound PBG with monomeric PAG and polymer bound PAG with monomeric PBG showed a PDL response. The performance of the polymer bound formulations is compared to the same formulations with small molecule analogs of PAG and PBG.Chemical Engineerin

    Folding and unfolding phylogenetic trees and networks

    Get PDF
    Phylogenetic networks are rooted, labelled directed acyclic graphs which are commonly used to represent reticulate evolution. There is a close relationship between phylogenetic networks and multi-labelled trees (MUL-trees). Indeed, any phylogenetic network NN can be "unfolded" to obtain a MUL-tree U(N)U(N) and, conversely, a MUL-tree TT can in certain circumstances be "folded" to obtain a phylogenetic network F(T)F(T) that exhibits TT. In this paper, we study properties of the operations UU and FF in more detail. In particular, we introduce the class of stable networks, phylogenetic networks NN for which F(U(N))F(U(N)) is isomorphic to NN, characterise such networks, and show that they are related to the well-known class of tree-sibling networks.We also explore how the concept of displaying a tree in a network NN can be related to displaying the tree in the MUL-tree U(N)U(N). To do this, we develop a phylogenetic analogue of graph fibrations. This allows us to view U(N)U(N) as the analogue of the universal cover of a digraph, and to establish a close connection between displaying trees in U(N)U(N) and reconcilingphylogenetic trees with networks

    A Note on Encodings of Phylogenetic Networks of Bounded Level

    Full text link
    Driven by the need for better models that allow one to shed light into the question how life's diversity has evolved, phylogenetic networks have now joined phylogenetic trees in the center of phylogenetics research. Like phylogenetic trees, such networks canonically induce collections of phylogenetic trees, clusters, and triplets, respectively. Thus it is not surprising that many network approaches aim to reconstruct a phylogenetic network from such collections. Related to the well-studied perfect phylogeny problem, the following question is of fundamental importance in this context: When does one of the above collections encode (i.e. uniquely describe) the network that induces it? In this note, we present a complete answer to this question for the special case of a level-1 (phylogenetic) network by characterizing those level-1 networks for which an encoding in terms of one (or equivalently all) of the above collections exists. Given that this type of network forms the first layer of the rich hierarchy of level-k networks, k a non-negative integer, it is natural to wonder whether our arguments could be extended to members of that hierarchy for higher values for k. By giving examples, we show that this is not the case

    Outer jet X-ray and radio emission in R Aquarii: 1999.8 to 2004.0

    Full text link
    Chandra and VLA observations of the symbiotic star R Aqr in 2004 reveal significant changes over the three to four year interval between these observations and previous observations taken with the VLA in 1999 and with Chandra in 2000. This paper reports on the evolution of the outer thermal X-ray lobe-jets and radio jets. The emission from the outer X-ray lobe-jets lies farther away from the central binary than the outer radio jets, and comes from material interpreted as being shock heated to ~10^6 K, a likely result of collision between high speed material ejected from the central binary and regions of enhanced gas density. Between 2000 and 2004, the Northeast (NE) outer X-ray lobe-jet moved out away from the central binary, with an apparent projected motion of ~580 km s^-1. The Southwest (SW) outer X-ray lobe-jet almost disappeared between 2000 and 2004, presumably due to adiabatic expansion and cooling. The NE radio bright spot also moved away from the central binary between 2000 and 2004, but with a smaller apparent velocity than of the NE X-ray bright spot. The SW outer lobe-jet was not detected in the radio in either 1999 or 2004. The density and mass of the X-ray emitting material is estimated. Cooling times, shock speeds, pressure and confinement are discussed.Comment: 23 pages, 8 figure

    Silicates in D-type symbiotic stars: an ISO overview

    Get PDF
    We investigate the IR spectral features of a sample of D-type symbiotic stars. Analyzing unexploited ISO-SWS data, deriving the basic observational parameters of dust bands and comparing them with respect to those observed in other astronomical sources, we try to highlight the effect of environment on grain chemistry and physic. We find strong amorphous silicate emission bands at 10 micron and 18 micron in a large fraction of the sample. The analysis of the 10 micron band, along with a direct comparison with several astronomical sources, reveals that silicate dust in symbiotic stars shows features between the characteristic circumstellar environments and the interstellar medium. This indicates an increasing reprocessing of grains in relation to specific symbiotic behavior of the objects. A correlation between the central wavelength of the 10 and 18 micron dust bands is found. By the modeling of IR spectral lines we investigate also dust grains conditions within the shocked nebulae. Both the unusual depletion values and the high sputtering efficiency might be explained by the formation of SiO moleculae, which are known to be a very reliable shock tracer. We conclude that the signature of dust chemical disturbance due to symbiotic activity should be looked for in the outer, circumbinary, expanding shells where the environmental conditions for grain processing might be achieved. Symbiotic stars are thus attractive targets for new mid-infrared and mm observations.Comment: 24 pages, 6 figures, 5 tables - to be published in A

    Combined analysis of solar neutrino and solar irradiance data: further evidence for variability of the solar neutrino flux and its implications concerning the solar core

    Full text link
    A search for any particular feature in any single solar neutrino dataset is unlikely to establish variability of the solar neutrino flux since the count rates are very low. It helps to combine datasets, and in this article we examine data from both the Homestake and GALLEX experiments. These show evidence of modulation with a frequency of 11.85 yr-1, which could be indicative of rotational modulation originating in the solar core. We find that precisely the same frequency is prominent in power spectrum analyses of the ACRIM irradiance data for both the Homestake and GALLEX time intervals. These results suggest that the solar core is inhomogeneous and rotates with sidereal frequency 12.85 yr-1. We find, by Monte Carlo calculations, that the probability that the neutrino data would by chance match the irradiance data in this way is only 2 parts in 10,000. This rotation rate is significantly lower than that of the inner radiative zone (13.97 yr-1) as recently inferred from analysis of Super-Kamiokande data, suggesting that there may be a second, inner tachocline separating the core from the radiative zone. This opens up the possibility that there may be an inner dynamo that could produce a strong internal magnetic field and a second solar cycle.Comment: 22 pages, 9 tables, 10 figure

    The Magnetic Power Spectrum in Faraday Rotation Screens

    Get PDF
    The autocorrelation function and similarly the Fourier-power spectrum of a rotation measure (RM) map of an extended background radio source can be used to measure components of the magnetic autocorrelation and power-spectrum tensor within a foreground Faraday screen. It is possible to reconstruct the full non-helical part of this tensor in the case of an isotropic magnetic field distribution statistics. The helical part is only accessible with additional information; e.g. the knowledge that the fields are force-free. The magnetic field strength, energy spectrum and autocorrelation length l_B can be obtained from the non-helical part alone. We demonstrate that l_B can differ substantially from l_RM, the observationally easily accessible autocorrelation length of an RM map. In typical astrophysical situation l_RM > l_B. Any RM study, which does not take this distinction into account, likely underestimates the magnetic field strength. For power-law magnetic power spectra, and for patchy magnetic field configurations the central RM autocorrelation function is shown to have characteristic asymptotic shapes. Ways to constrain the volume filling factor of a patchy field distribution are discussed. We discuss strategies to analyse observational data, taking into account - with the help of a window function - the limited extent of the polarised radio source, the spatial distribution of the electron density and average magnetic energy density in the screen, and allowing for noise reducing data weighting. We briefly discuss the effects of possible observational artefacts, and strategies to avoid them.Comment: 15 pages, 4 figures, accepted by Astronomy & Astrophysic

    Dust-trapping vortices and a potentially planet-triggered spiral wake in the pre-transitional disk of V1247 Orionis (article)

    Get PDF
    This is the final version of the article. Available from American Astronomical Society via the DOI in this record.The dataset associated with this article is located in ORE at: https://doi.org/10.24378/exe.1804The radial drift problem constitutes one of the most fundamental problems in planet formation theory, as it predicts particles to drift into the star before they are able to grow to planetesimal size. Dust-trapping vortices have been proposed as a possible solution to this problem, as they might be able to trap particles over millions of years, allowing them to grow beyond the radial drift barrier. Here, we present ALMA 0.04′′-resolution imaging of the pre-transitional disk of V1247 Orionis that reveals an asymmetric ring as well as a sharply-confined crescent structure, resembling morphologies seen in theoretical models of vortex formation. The asymmetric ring (at 0.17′′=54 au separation from the star) and the crescent (at 0.38′′=120 au) seem smoothly connected through a one-armed spiral arm structure that has been found previously in scattered light. We propose a physical scenario with a planet orbiting at ∼ 0.3′′≈100 au, where the onearmed spiral arm detected in polarised light traces the accretion stream feeding the protoplanet. The dynamical influence of the planet clears the gap between the ring and the crescent and triggers two vortices that trap mm-sized particles, namely the crescent and the bright asymmetry seen in the ring. We conducted dedicated hydrodynamics simulations of a disk with an embedded planet, which results in similar spiral-arm morphologies as seen in our scattered light images. At the position of the spiral wake and the crescent we also observe 12CO (3-2) and H12CO+ (4-3) excess line emission, likely tracing the increased scale-height in these disk regions.This paper makes use of ALMA data set ADS/JAO.ALMA#2015.1.00986.S. We thank the German ALMA ARC for support, in particular Stefanie M¨uhle and Benjamin Magnelli. Our team acknowledges support from the European Research Council (Grant Agreement Numbers 639889 and 339248), an STFC Rutherford Fellowship/Grant (ST/J004030/1, ST/K003445/1), Philip Leverhulme Prize (PLP-2013-110), NAOJ ALMA Scientific Research Grant (Number 2016-02A), and NASA Exoplanet Research Program grants NNX16AJ75G and NNX17AF88G. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. This work used the DiRAC Complexity system, operated by the University of Leicester IT Services, which forms part of the STFC DiRAC HPC Facility. This equipment is funded by BIS National E-Infrastructure capital grant ST/K000373/1 and STFC DiRAC Operations grant ST/K0003259/1
    • …
    corecore