We investigate the IR spectral features of a sample of D-type symbiotic
stars. Analyzing unexploited ISO-SWS data, deriving the basic observational
parameters of dust bands and comparing them with respect to those observed in
other astronomical sources, we try to highlight the effect of environment on
grain chemistry and physic. We find strong amorphous silicate emission bands at
10 micron and 18 micron in a large fraction of the sample. The analysis of the
10 micron band, along with a direct comparison with several astronomical
sources, reveals that silicate dust in symbiotic stars shows features between
the characteristic circumstellar environments and the interstellar medium. This
indicates an increasing reprocessing of grains in relation to specific
symbiotic behavior of the objects. A correlation between the central wavelength
of the 10 and 18 micron dust bands is found. By the modeling of IR spectral
lines we investigate also dust grains conditions within the shocked nebulae.
Both the unusual depletion values and the high sputtering efficiency might be
explained by the formation of SiO moleculae, which are known to be a very
reliable shock tracer. We conclude that the signature of dust chemical
disturbance due to symbiotic activity should be looked for in the outer,
circumbinary, expanding shells where the environmental conditions for grain
processing might be achieved. Symbiotic stars are thus attractive targets for
new mid-infrared and mm observations.Comment: 24 pages, 6 figures, 5 tables - to be published in A