1,747 research outputs found

    Performance of laterally loaded piles considering soil and interface parameters

    Full text link
    © 2014 Techno-Press, Ltd. To investigate the soil-pile interactive performance under lateral loads, a set of laboratory model tests was conducted on remoulded test bed of soft clay and medium dense sand. Then, a simplified boundary element analysis had been carried out assuming floating pile. In case of soft clay, it has been observed that lateral loads on piles can initiate the formation of a gap, soil heave and the tension crack in the vicinity of the soil surface and the interface, whereas in medium dense sand, a semi-elliptical depression zone can develop. Comparison of test and boundary element results indicates the accuracy of the solution developed. However, in the boundary element analysis, the possible shear stresses likely to be developed at the interface are ignored in order to simplify the existing complex equations. Moreover, it is unable to capture the influence of base restraint in case of a socketed pile. To bridge up this gap and to study the influence of the initial stress state and interface parameters, a field based case-study of laterally-loaded pile in layered soil with socketed tip is explored and modelled using the finite element method. The results of the model have been verified against known field measurements from a case-study. Parametric studies have been conducted to investigate the influence of the coefficient of lateral earth pressure and the interface strength reduction factor on the results of the model

    Dorsal and ventral stimuli in cell–material interactions: effect on cell morphology

    Get PDF
    Cells behave differently between bidimensional (2D) and tridimensional (3D) environments. While most of the in vitro cultures are 2D, most of the in vivo extracellular matrices are 3D, which encourages the development of more relevant culture conditions, seeking to provide more physiological models for biomedicine (e.g., cancer, drug discovery and tissue engineering) and further insights into any dimension-dependent biological mechanism. In this study, cells were cultured between two protein coated surfaces (sandwich-like culture). Cells used both dorsal and ventral receptors to adhere and spread, undergoing morphological changes with respect to the 2D control. Combinations of fibronectin and bovine serum albumin on the dorsal and ventral sides led to different cell morphologies, which were quantified from bright field images by calculating the spreading area and circularity. Although the mechanism underlying these differences remains to be clarified, excitation of dorsal receptors by anchorage to extracellular proteins plays a key role on cell behavior. This approach—sandwich-like culture—becomes therefore a versatile method to study cell adhesion in well-defined conditions in a quasi 3D environment

    Security challenges of small cell as a service in virtualized mobile edge computing environments

    Get PDF
    Research on next-generation 5G wireless networks is currently attracting a lot of attention in both academia and industry. While 5G development and standardization activities are still at their early stage, it is widely acknowledged that 5G systems are going to extensively rely on dense small cell deployments, which would exploit infrastructure and network functions virtualization (NFV), and push the network intelligence towards network edges by embracing the concept of mobile edge computing (MEC). As security will be a fundamental enabling factor of small cell as a service (SCaaS) in 5G networks, we present the most prominent threats and vulnerabilities against a broad range of targets. As far as the related work is concerned, to the best of our knowledge, this paper is the first to investigate security challenges at the intersection of SCaaS, NFV, and MEC. It is also the first paper that proposes a set of criteria to facilitate a clear and effective taxonomy of security challenges of main elements of 5G networks. Our analysis can serve as a staring point towards the development of appropriate 5G security solutions. These will have crucial effect on legal and regulatory frameworks as well as on decisions of businesses, governments, and end-users

    Environmental regulation of individual body size contributes to geographic variation in clonal life cycle expression

    Get PDF
    Clonal behavior has been hypothesized to provide an escape from allometric metabolic scaling that limits the maximum mass achieved by a single individual. Here, we demonstrate the capacity of a wide-spread, non-native sea anemone to buffer its colony biomass accumulation rate across environments by modulating ramet body size through environmentally dependent growth, fission, and catabolism. In 2015, thermal reaction norms for growth and fission behavior were constructed using clonal lines of the sea anemone Diadumene lineata. In 2018, variation in growth patterns under a factorial cross of temperature level and oxygen availability was examined to test the hypothesis that individual ramet size is regulated by oxygen limitation in accordance with optimal size theory. Across a wide range of temperatures, colonies accumulated a similar amount of biomass despite a radical shift from unitary to clonal growth, supporting fission as a mechanism to buffer growth rates over a range of conditions. Individual body size appears to be regulated by the environment with increased temperature and reduced oxygen modifying fission and mass-specific growth patterns, leading to the production of smaller-bodied ramets in warm conditions. However, whether anemones in common garden conditions reduce individual body size through catabolism or fission depends on the region of origin and may relate to differences in seasonal temperature patterns among coastlines, which influence the energetic benefits of fission rate plasticity

    Epidemic space

    Get PDF
    The aim of this article is to highlight the importance of 'spatiality' in understanding the materialization of risk society and cultivation of risk sensibilities. More specifically it provides a cultural analysis of pathogen virulence (as a social phenomenon) by means of tracing and mapping the spatial flows that operate in the uncharted zones between the microphysics of infection and the macrophysics of epidemics. It will be argued that epidemic space consists of three types of forces: the vector, the index and the vortex. It will draw on Latour's Actor Network Theory to argue that epidemic space is geared towards instability when the vortex (of expanding associations and concerns) displaces the index (of finding a single cause)

    Adequacy of therapy for people with both COPD and heart failure in the UK : historical cohort study

    Get PDF
    Acknowledgments We thank Derek Skinner for his contributions to the data acquisition and handling and Carole Nicholls and Priyanka Raju Konduru for statistical support. Writing and editorial support was provided by Elizabeth V. Hillyer, DVM, supported by Novartis Pharma AG, Basel, Switzerland. Funding This work was supported by Novartis. Employees of the sponsor (listed as authors) participated in the study design, interpretation of the results, writing of the report, and the decision to submit the paper for publication.Peer reviewedPublisher PD

    Imbedding HACCP principles in dairy herd health and production management: case report on calf rearing

    Get PDF
    Driven by consumer demands, European legislation has suggested the use of HACCP (Hazard Analysis Critical Control Point) as the quality risk management programme for the whole dairy chain. Until now, an exception has been made for primary producers, but as regulations evolve, on-farm HACCP-like programmes should be ready to assure food safety as well as animal health and animal welfare. In our field experiment, the HACCP-concept was used to combine both optimal farm management and formalisation of quality assurance in an on-farm situation in the Netherlands. The process of young stock rearing was chosen, since its importance for the future of the farm is often underestimated. Hazards and their associated risk factors can be controlled within the farm-specific standards and tolerances, as targets can be controlled by corrective measures and by implementation of farm-specific worksheets. The veterinarian is pivotal for the facility-based HACCP team, since he/she has knowledge about on-farm risk assessment and relations between clinical pathology, feed and farm management. The HACCP concept in combination with veterinary herd health and production management programmes offers a promising approach to optimise on-farm production processes (i.e., young stock rearing) in addition to a structural approach for quality risk management on dairy farms

    Human Health Risk Assessment (HHRA) for environmental development and transfer of antibiotic resistanc

    Get PDF
    This is the final version of the article. Available from NIEHS via the DOI in this record.Open access journalBACKGROUND: Only recently has the environment been clearly implicated in the risk of antibiotic resistance to clinical outcome, but to date there have been few documented approaches to formally assess these risks. OBJECTIVE: We examined possible approaches and sought to identify research needs to enable human health risk assessments (HHRA) that focus on the role of the environment in the failure of antibiotic treatment caused by antibiotic-resistant pathogens. METHODS: The authors participated in a workshop held 4-8 March 2012 in QuĂ©bec, Canada, to define the scope and objectives of an environmental assessment of antibiotic-resistance risks to human health. We focused on key elements of environmental-resistance-development "hot spots," exposure assessment (unrelated to food), and dose response to characterize risks that may improve antibiotic-resistance management options. DISCUSSION: Various novel aspects to traditional risk assessments were identified to enable an assessment of environmental antibiotic resistance. These include a) accounting for an added selective pressure on the environmental resistome that, over time, allows for development of antibiotic-resistant bacteria (ARB); b) identifying and describing rates of horizontal gene transfer (HGT) in the relevant environmental "hot spot" compartments; and c) modifying traditional dose-response approaches to address doses of ARB for various health outcomes and pathways. CONCLUSIONS: We propose that environmental aspects of antibiotic-resistance development be included in the processes of any HHRA addressing ARB. Because of limited available data, a multicriteria decision analysis approach would be a useful way to undertake an HHRA of environmental antibiotic resistance that informs risk managers.This manuscript was conceived at a workshop (Antimicrobial Resistance in the Environment: Assessing and Managing Effects of Anthropogenic Activities) held 4–8 March 2012 in Montebello, QuĂ©bec, Canada. The workshop was sponsored by the Canadian Society of Microbiologists, with financial support from AstraZeneca Ltd.; Pfizer Animal Health; F. Hoffman-La Roche Ltd.; GlaxoSmithKline; Unilever; Huvepharma; the American Cleaning Institute; the Canadian Animal Health Institute; the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety; Health Canada; and the Public Health Agency of Canada

    Migratory Connectivity of the Monarch Butterfly (Danaus plexippus): Patterns of Spring Re-Colonization in Eastern North America

    Get PDF
    Each year, millions of monarch butterflies (Danaus plexippus) migrate up to 3000 km from their overwintering grounds in central Mexico to breed in eastern North America. Malcolm et al. (1993) articulated two non-mutually exclusive hypotheses to explain how Monarchs re-colonize North America each spring. The ‘successive brood’ hypothesis proposes that monarchs migrate from Mexico to the Gulf Coast, lay eggs and die, leaving northern re-colonization of the breeding range to subsequent generations. The ‘single sweep’ hypothesis proposes that overwintering monarchs continue to migrate northward after arriving on the Gulf coast and may reach the northern portion of the breeding range, laying eggs along the way. To examine these hypotheses, we sampled monarchs throughout the northern breeding range and combined stable-hydrogen isotopes (ήD) to estimate natal origin with wing wear scores to differentiate between individuals born in the current vs. previous year. Similar to Malcolm et al. (1993), we found that the majority of the northern breeding range was re-colonized by the first generation of monarchs (90%). We also estimated that a small number of individuals (10%) originated directly from Mexico and, therefore adopted a sweep strategy. Contrary to Malcolm et al. (1993), we found that 62% of monarchs sampled in the Great Lakes originated from the Central U.S., suggesting that this region is important for sustaining production in the northern breeding areas. Our results provide new evidence of re-colonization patterns in monarchs and contribute important information towards identifying productive breeding regions of this unique migratory insect
    • 

    corecore