340 research outputs found

    Estimating the NIH Efficient Frontier

    Get PDF
    Background: The National Institutes of Health (NIH) is among the world’s largest investors in biomedical research, with a mandate to: “…lengthen life, and reduce the burdens of illness and disability.” Its funding decisions have been criticized as insufficiently focused on disease burden. We hypothesize that modern portfolio theory can create a closer link between basic research and outcome, and offer insight into basic-science related improvements in public health. We propose portfolio theory as a systematic framework for making biomedical funding allocation decisions–one that is directly tied to the risk/reward trade-off of burden-of-disease outcomes. Methods and Findings: Using data from 1965 to 2007, we provide estimates of the NIH “efficient frontier”, the set of funding allocations across 7 groups of disease-oriented NIH institutes that yield the greatest expected return on investment for a given level of risk, where return on investment is measured by subsequent impact on U.S. years of life lost (YLL). The results suggest that NIH may be actively managing its research risk, given that the volatility of its current allocation is 17% less than that of an equal-allocation portfolio with similar expected returns. The estimated efficient frontier suggests that further improvements in expected return (89% to 119% vs. current) or reduction in risk (22% to 35% vs. current) are available holding risk or expected return, respectively, constant, and that 28% to 89% greater decrease in average years-of-life-lost per unit risk may be achievable. However, these results also reflect the imprecision of YLL as a measure of disease burden, the noisy statistical link between basic research and YLL, and other known limitations of portfolio theory itself. Conclusions: Our analysis is intended to serve as a proof-of-concept and starting point for applying quantitative methods to allocating biomedical research funding that are objective, systematic, transparent, repeatable, and expressly designed to reduce the burden of disease. By approaching funding decisions in a more analytical fashion, it may be possible to improve their ultimate outcomes while reducing unintended consequences

    Low omega-6 vs. low omega-6 plus high omega-3 dietary intervention for Chronic Daily Headache: Protocol for a randomized clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Targeted analgesic dietary interventions are a promising strategy for alleviating pain and improving quality of life in patients with persistent pain syndromes, such as chronic daily headache (CDH). High intakes of the omega-6 (n-6) polyunsaturated fatty acids (PUFAs), linoleic acid (LA) and arachidonic acid (AA) may promote physical pain by increasing the abundance, and subsequent metabolism, of LA and AA in immune and nervous system tissues. Here we describe methodology for an ongoing randomized clinical trial comparing the metabolic and clinical effects of a low n-6, average n-3 PUFA diet, to the effects of a low n-6 plus high n-3 PUFA diet, in patients with CDH. Our primary aim is to determine if: A) both diets reduce n-6 PUFAs in plasma and erythrocyte lipid pools, compared to baseline; and B) the low n-6 plus high n-3 diet produces a greater decline in n-6 PUFAs, compared to the low n-6 diet alone. Secondary clinical outcomes include headache-specific quality-of-life, and headache frequency and intensity.</p> <p>Methods</p> <p>Adults meeting the International Classification of Headache Disorders criteria for CDH are included. After a 6-week baseline phase, participants are randomized to a low n-6 diet, or a low n-6 plus high n-3 diet, for 12 weeks. Foods meeting nutrient intake targets are provided for 2 meals and 2 snacks per day. A research dietitian provides intensive dietary counseling at 2-week intervals. Web-based intervention materials complement dietitian advice. Blood and clinical outcome data are collected every 4 weeks.</p> <p>Results</p> <p>Subject recruitment and retention has been excellent; 35 of 40 randomized participants completed the 12-week intervention. Preliminary blinded analysis of composite data from the first 20 participants found significant reductions in erythrocyte n-6 LA, AA and %n-6 in HUFA, and increases in n-3 EPA, DHA and the omega-3 index, indicating adherence.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/(NCT01157208)">(NCT01157208)</a></p

    Avian cholera, a threat to the viability of an Arctic seabird colony?

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 7 (2012): e29659, doi:10.1371/journal.pone.0029659.Evidence that infectious diseases cause wildlife population extirpation or extinction remains anecdotal and it is unclear whether the impacts of a pathogen at the individual level can scale up to population level so drastically. Here, we quantify the response of a Common eider colony to emerging epidemics of avian cholera, one of the most important infectious diseases affecting wild waterfowl. We show that avian cholera has the potential to drive colony extinction, even over a very short period. Extinction depends on disease severity (the impact of the disease on adult female survival) and disease frequency (the number of annual epidemics per decade). In case of epidemics of high severity (i.e., causing >30% mortality of breeding females), more than one outbreak per decade will be unsustainable for the colony and will likely lead to extinction within the next century; more than four outbreaks per decade will drive extinction to within 20 years. Such severity and frequency of avian cholera are already observed, and avian cholera might thus represent a significant threat to viability of breeding populations. However, this will depend on the mechanisms underlying avian cholera transmission, maintenance, and spread, which are currently only poorly known.The study was supported by the Canadian Wildlife Service-Environment Canada (http://www.ec.gc.ca/), Nunavut Wildlife Management Board (http:// www.nwmb.com/), Greenland Institute of Natural Resources (http://www.natur.gl/), Polar Continental Shelf Project (http://polar.nrcan.gc.ca/), Fonds Que´be´cois de la Recherche sur la Nature et les Technologies (http://www.fqrnt.gouv.qc.ca/), Canadian Network of Centres of Excellence ArcticNet (http://www.arcticnet.ulaval. ca/), Natural Sciences and Engineering Research Council of Canada (http://www.nserc-crsng.gc.ca/), and the Department of Indian Affairs and Northern Canada (http://www.ainc-inac.gc.ca/)

    Novel Allosteric Sites on Ras for Lead Generation

    Get PDF
    Aberrant Ras activity is a hallmark of diverse cancers and developmental diseases. Unfortunately, conventional efforts to develop effective small molecule Ras inhibitors have met with limited success. We have developed a novel multi-level computational approach to discover potential inhibitors of previously uncharacterized allosteric sites. Our approach couples bioinformatics analysis, advanced molecular simulations, ensemble docking and initial experimental testing of potential inhibitors. Molecular dynamics simulation highlighted conserved allosteric coupling of the nucleotide-binding switch region with distal regions, including loop 7 and helix 5. Bioinformatics methods identified novel transient small molecule binding pockets close to these regions and in the vicinity of the conformationally responsive switch region. Candidate binders for these pockets were selected through ensemble docking of ZINC and NCI compound libraries. Finally, cell-based assays confirmed our hypothesis that the chosen binders can inhibit the downstream signaling activity of Ras. We thus propose that the predicted allosteric sites are viable targets for the development and optimization of new drugs

    BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Visualisation of genome comparisons is invaluable for helping to determine genotypic differences between closely related prokaryotes. New visualisation and abstraction methods are required in order to improve the validation, interpretation and communication of genome sequence information; especially with the increasing amount of data arising from next-generation sequencing projects. Visualising a prokaryote genome as a circular image has become a powerful means of displaying informative comparisons of one genome to a number of others. Several programs, imaging libraries and internet resources already exist for this purpose, however, most are either limited in the number of comparisons they can show, are unable to adequately utilise draft genome sequence data, or require a knowledge of command-line scripting for implementation. Currently, there is no freely available desktop application that enables users to rapidly visualise comparisons between hundreds of draft or complete genomes in a single image.</p> <p>Results</p> <p>BLAST Ring Image Generator (BRIG) can generate images that show multiple prokaryote genome comparisons, without an arbitrary limit on the number of genomes compared. The output image shows similarity between a central reference sequence and other sequences as a set of concentric rings, where BLAST matches are coloured on a sliding scale indicating a defined percentage identity. Images can also include draft genome assembly information to show read coverage, assembly breakpoints and collapsed repeats. In addition, BRIG supports the mapping of unassembled sequencing reads against one or more central reference sequences. Many types of custom data and annotations can be shown using BRIG, making it a versatile approach for visualising a range of genomic comparison data. BRIG is readily accessible to any user, as it assumes no specialist computational knowledge and will perform all required file parsing and BLAST comparisons automatically.</p> <p>Conclusions</p> <p>There is a clear need for a user-friendly program that can produce genome comparisons for a large number of prokaryote genomes with an emphasis on rapidly utilising unfinished or unassembled genome data. Here we present BRIG, a cross-platform application that enables the interactive generation of comparative genomic images via a simple graphical-user interface. BRIG is freely available for all operating systems at <url>http://sourceforge.net/projects/brig/</url>.</p

    Molecular dynamics simulations and drug discovery

    Get PDF
    This review discusses the many roles atomistic computer simulations of macromolecular (for example, protein) receptors and their associated small-molecule ligands can play in drug discovery, including the identification of cryptic or allosteric binding sites, the enhancement of traditional virtual-screening methodologies, and the direct prediction of small-molecule binding energies. The limitations of current simulation methodologies, including the high computational costs and approximations of molecular forces required, are also discussed. With constant improvements in both computer power and algorithm design, the future of computer-aided drug design is promising; molecular dynamics simulations are likely to play an increasingly important role

    Genome Sequence Analyses of Pseudomonas savastanoi pv. glycinea and Subtractive Hybridization-Based Comparative Genomics with Nine Pseudomonads

    Get PDF
    Bacterial blight, caused by Pseudomonas savastanoi pv. glycinea (Psg), is a common disease of soybean. In an effort to compare a current field isolate with one isolated in the early 1960s, the genomes of two Psg strains, race 4 and B076, were sequenced using 454 pyrosequencing. The genomes of both Psg strains share more than 4,900 highly conserved genes, indicating very low genetic diversity between Psg genomes. Though conserved, genome rearrangements and recombination events occur commonly within the two Psg genomes. When compared to each other, 437 and 163 specific genes were identified in B076 and race 4, respectively. Most specific genes are plasmid-borne, indicating that acquisition and maintenance of plasmids may represent a major mechanism to change the genetic composition of the genome and even acquire new virulence factors. Type three secretion gene clusters of Psg strains are near identical with that of P. savastanoi pv. phaseolicola (Pph) strain 1448A and they shared 20 common effector genes. Furthermore, the coronatine biosynthetic cluster is present on a large plasmid in strain B076, but not in race 4. In silico subtractive hybridization-based comparative genomic analyses with nine sequenced phytopathogenic pseudomonads identified dozens of specific islands (SIs), and revealed that the genomes of Psg strains are more similar to those belonging to the same genomospecies such as Pph 1448A than to other phytopathogenic pseudomonads. The number of highly conserved genes (core genome) among them decreased dramatically when more genomes were included in the subtraction, suggesting the diversification of pseudomonads, and further indicating the genome heterogeneity among pseudomonads. However, the number of specific genes did not change significantly, suggesting these genes are indeed specific in Psg genomes. These results reinforce the idea of a species complex of P. syringae and support the reclassification of P. syringae into different species

    Genomic characterization of the most barotolerant Listeria monocytogenes RO15 strain compared to reference strains used to evaluate food high pressure processing

    Get PDF
    BackgroundHigh pressure processing (HPP; i.e. 100-600MPa pressure depending on product) is a non-thermal preservation technique adopted by the food industry to decrease significantly foodborne pathogens, including Listeria monocytogenes, from food. However, susceptibility towards pressure differs among diverse strains of L. monocytogenes and it is unclear if this is due to their intrinsic characteristics related to genomic content. Here, we tested the barotolerance of 10 different L. monocytogenes strains, from food and food processing environments and widely used reference strains including clinical isolate, to pressure treatments with 400 and 600MPa. Genome sequencing and genome comparison of the tested L. monocytogenes strains were performed to investigate the relation between genomic profile and pressure tolerance.ResultsNone of the tested strains were tolerant to 600MPa. A reduction of more than 5 log(10) was observed for all strains after 1min 600MPa pressure treatment. L. monocytogenes strain RO15 showed no significant reduction in viable cell counts after 400MPa for 1min and was therefore defined as barotolerant. Genome analysis of so far unsequenced L. monocytogenes strain RO15, 2HF33, MB5, AB199, AB120, C7, and RO4 allowed us to compare the gene content of all strains tested. This revealed that the three most pressure tolerant strains had more than one CRISPR system with self-targeting spacers. Furthermore, several anti-CRISPR genes were detected in these strains. Pan-genome analysis showed that 10 prophage genes were significantly associated with the three most barotolerant strains.ConclusionsL. monocytogenes strain RO15 was the most pressure tolerant among the selected strains. Genome comparison suggests that there might be a relationship between prophages and pressure tolerance in L. monocytogenes.Peer reviewe

    Climate Change Impact on Neotropical Social Wasps

    Get PDF
    Establishing a direct link between climate change and fluctuations in animal populations through long-term monitoring is difficult given the paucity of baseline data. We hypothesized that social wasps are sensitive to climatic variations, and thus studied the impact of ENSO events on social wasp populations in French Guiana. We noted that during the 2000 La Niña year there was a 77.1% decrease in their nest abundance along ca. 5 km of forest edges, and that 70.5% of the species were no longer present. Two simultaneous 13-year surveys (1997–2009) confirmed the decrease in social wasps during La Niña years (2000 and 2006), while an increase occurred during the 2009 El Niño year. A 30-year weather survey showed that these phenomena corresponded to particularly high levels of rainfall, and that temperature, humidity and global solar radiation were correlated with rainfall. Using the Self-Organizing Map algorithm, we show that heavy rainfall during an entire rainy season has a negative impact on social wasps. Strong contrasts in rainfall between the dry season and the short rainy season exacerbate this effect. Social wasp populations never recovered to their pre-2000 levels. This is probably because these conditions occurred over four years; heavy rainfall during the major rainy seasons during four other years also had a detrimental effect. On the contrary, low levels of rainfall during the major rainy season in 2009 spurred an increase in social wasp populations. We conclude that recent climatic changes have likely resulted in fewer social wasp colonies because they have lowered the wasps' resistance to parasitoids and pathogens. These results imply that Neotropical social wasps can be regarded as bio-indicators because they highlight the impact of climatic changes not yet perceptible in plants and other animals
    corecore