265 research outputs found

    A Brazilian glycoprotein E-negative bovine herpesvirus type 1.2a (BHV-1.2a) mutant is attenuated for cattle and induces protection against wild-type virus challenge

    Get PDF
    The authors previously reported the construction of a glycoprotein E-deleted (gE-) mutant of bovine herpesvirus type 1.2a (BHV-1.2a). This mutant, 265gE-, was designed as a vaccinal strain for differential vaccines, allowing the distinction between vaccinated and naturally infected cattle. In order to determine the safety and efficacy of this candidate vaccine virus, a group of calves was inoculated with 265gE-. The virus was detected in secretions of inoculated calves to lower titres and for a shorter period than the parental virus inoculated in control calves. Twenty one days after inoculation, the calves were challenged with the wild type parental virus. Only mild signs of infection were detected on vaccinated calves, whereas non-vaccinated controls displayed intense rhinotracheitis and shed virus for longer and to higher titres than vaccinated calves. Six months after vaccination, both vaccinated and control groups were subjected to reactivation of potentially latent virus. The mutant 265gE- could not be reactivated from vaccinated calves. The clinical signs observed, following the reactivation of the parental virus, were again much milder on vaccinated than on non-vaccinated calves. Moreover, parental virus shedding was considerably reduced on vaccinated calves at reactivation. In view of its attenuation, immunogenicity and protective effect upon challenge and reactivation with a virulent BHV-1, the mutant 265gE- was shown to be suitable for use as a BHV-1 differential vaccine viru

    Identification of candidate genes affecting Δ9-tetrahydrocannabinol biosynthesis in Cannabis sativa

    Get PDF
    RNA isolated from the glands of a Δ9-tetrahydrocannabinolic acid (THCA)-producing strain of Cannabis sativa was used to generate a cDNA library containing over 100 000 expressed sequence tags (ESTs). Sequencing of over 2000 clones from the library resulted in the identification of over 1000 unigenes. Candidate genes for almost every step in the biochemical pathways leading from primary metabolites to THCA were identified. Quantitative PCR analysis suggested that many of the pathway genes are preferentially expressed in the glands. Hexanoyl-CoA, one of the metabolites required for THCA synthesis, could be made via either de novo fatty acids synthesis or via the breakdown of existing lipids. qPCR analysis supported the de novo pathway. Many of the ESTs encode transcription factors and two putative MYB genes were identified that were preferentially expressed in glands. Given the similarity of the Cannabis MYB genes to those in other species with known functions, these Cannabis MYBs may play roles in regulating gland development and THCA synthesis. Three candidates for the polyketide synthase (PKS) gene responsible for the first committed step in the pathway to THCA were characterized in more detail. One of these was identical to a previously reported chalcone synthase (CHS) and was found to have CHS activity. All three could use malonyl-CoA and hexanoyl-CoA as substrates, including the CHS, but reaction conditions were not identified that allowed for the production of olivetolic acid (the proposed product of the PKS activity needed for THCA synthesis). One of the PKS candidates was highly and specifically expressed in glands (relative to whole leaves) and, on the basis of these expression data, it is proposed to be the most likely PKS responsible for olivetolic acid synthesis in Cannabis glands

    Language and ethnobiological skills decline precipitously in Papua New Guinea, the world's most linguistically diverse nation

    Get PDF
    Papua New Guinea is home to >10% of the world’s languages and rich and varied biocultural knowledge, but the future of this diversity remains unclear. We measured language skills of 6,190 students speaking 392 languages (5.5% of the global total) and modeled their future trends using individual-level variables characterizing family language use, socioeconomic conditions, students’ skills, and language traits. This approach showed that only 58% of the students, compared to 91% of their parents, were fluent in indigenous languages, while the trends in key drivers of language skills (language use at home, proportion of mixed-language families, urbanization, students’ traditional skills) predicted accelerating decline of fluency to an estimated 26% in the next generation of students. Ethnobiological knowledge declined in close parallel with language skills. Varied medicinal plant uses known to the students speaking indigenous languages are replaced by a few, mostly nonnative species for the students speaking English or Tok Pisin, the national lingua franca. Most (88%) students want to teach indigenous language to their children. While crucial for keeping languages alive, this intention faces powerful external pressures as key factors (education, cash economy, road networks, and urbanization) associated with language attrition are valued in contemporary society

    A Dashboard to Support Decision-Making Processes in Learning Ecosystems

    Get PDF
    There are software solutions to solve most of the problems related to information management in any company or institutions, but still, there is a problem for transforming information into knowledge. Technological ecosystems emerge as a solution to combine existing tools and human resources to solve different problems of knowledge management. In particular, when the ecosystem is focused on learning processes associated with knowledge are named learning ecosystems. The learning ecosystem metamodel defined in previous works solves several problems related to the definition and implementation of these solutions. However, there are still challenges associated with improving the analysis and visualization of information as a way to discover knowledge and support decision making processes. On the other hand, there is a metamodel proposal to define customized dashboards for supporting decision-making processes. This proposal aims to integrate both metamodels as a way to improve the definition of learning ecosystems

    Nature's Swiss Army Knives: Ovipositor Structure Mirrors Ecology in a Multitrophic Fig Wasp Community

    Get PDF
    Resource partitioning is facilitated by adaptations along niche dimensions that range from morphology to behaviour. The exploitation of hidden resources may require specially adapted morphological or sensory tools for resource location and utilisation. Differences in tool diversity and complexity can determine not only how many species can utilize these hidden resources but also how they do so.The sclerotisation, gross morphology and ultrastructure of the ovipositors of a seven-member community of parasitic wasps comprising of gallers and parasitoids developing within the globular syconia (closed inflorescences) of Ficus racemosa (Moraceae) was investigated. These wasps also differ in their parasitism mode (external versus internal oviposition) and their timing of oviposition into the expanding syconium during its development. The number and diversity of sensilla, as well as ovipositor teeth, increased from internally ovipositing to externally ovipositing species and from gallers to parasitoids. The extent of sclerotisation of the ovipositor tip matched the force required to penetrate the syconium at the time of oviposition of each species. The internally ovipositing pollinator had only one type of sensillum and a single notch on the ovipositor tip. Externally ovipositing species had multiple sensilla types and teeth on their ovipositors. Chemosensilla were most concentrated at ovipositor tips while mechanoreceptors were more widely distributed, facilitating the precise location of hidden hosts in these wasps which lack larval host-seeking behaviour. Ovipositor traits of one parasitoid differed from those of its syntopic galler congeners and clustered with those of parasitoids within a different wasp subfamily. Thus ovipositor tools can show lability based on adaptive necessity, and are not constrained by phylogeny.Ovipositor structure mirrored the increasingly complex trophic ecology and requirements for host accessibility in this parasite community. Ovipositor structure could be a useful surrogate for predicting the biology of parasites in other communities
    corecore