208 research outputs found

    Transnational Business Governance Interactions, Regulatory Quality and Marginalized Actors: An Introduction

    Get PDF
    In what circumstances can transnational business governance interactions (TBGIs)—the myriad overlaps, intersections, conflicts, collisions and synergies amongst the actors and institutions involved in transnational regulation of business activity—be harnessed to enhance the quality of transnational regulation and advance the interests of marginalized actors? This chapter introduces the concept of transnational business governance interactions (TBGIs), summarizes the TBGI analytical framework and defines regulatory quality and marginalized actors. It proposes to investigate the relationship between TBGIs, regulatory quality and marginalized actors at three levels: regulatory capacities, outputs and outcomes. The chapter presents the plan of the book and summarizes the key messages of the chapters

    Transnational Business Governance Interactions: Conceptualization and Framework for Analysis

    Get PDF
    This special issue demonstrates the importance of interactions in transnational business governance. The number of schemes applying non-state authority to govern business conduct across borders has vastly expanded in numerous issue areas. As these initiatives proliferate, they increasingly interact with one another and with state-based regimes. The key challenge is to understand the implications of these interactions for regulatory capacity and performance, and ultimately for social and environmental impact. In this introduction, we propose an analytical framework for the study of transnational business governance interactions. The framework disaggregates the regulatory process to identify potential points of interaction, and suggests analytical questions that probe the key features of interactions at each point

    eROSITA Science Book: Mapping the Structure of the Energetic Universe

    Full text link
    eROSITA is the primary instrument on the Russian SRG mission. In the first four years of scientific operation after its launch, foreseen for 2014, it will perform a deep survey of the entire X-ray sky. In the soft X-ray band (0.5-2 keV), this will be about 20 times more sensitive than the ROSAT all sky survey, while in the hard band (2-10 keV) it will provide the first ever true imaging survey of the sky at those energies. Such a sensitive all-sky survey will revolutionize our view of the high-energy sky, and calls for major efforts in synergic, multi-wavelength wide area surveys in order to fully exploit the scientific potential of the X-ray data. The design-driving science of eROSITA is the detection of very large samples (~10^5 objects) of galaxy clusters out to redshifts z>1, in order to study the large scale structure in the Universe, test and characterize cosmological models including Dark Energy. eROSITA is also expected to yield a sample of around 3 millions Active Galactic Nuclei, including both obscured and un-obscured objects, providing a unique view of the evolution of supermassive black holes within the emerging cosmic structure. The survey will also provide new insights into a wide range of astrophysical phenomena, including accreting binaries, active stars and diffuse emission within the Galaxy, as well as solar system bodies that emit X-rays via the charge exchange process. Finally, such a deep imaging survey at high spectral resolution, with its scanning strategy sensitive to a range of variability timescales from tens of seconds to years, will undoubtedly open up a vast discovery space for the study of rare, unpredicted, or unpredictable high-energy astrophysical phenomena. In this living document we present a comprehensive description of the main scientific goals of the mission, with strong emphasis on the early survey phases.Comment: 84 Pages, 52 Figures. Published online as MPE document. Edited by S. Allen. G. Hasinger and K. Nandra. Few minor corrections (typos) and updated reference

    Accelerator experiments with soft protons and hyper-velocity dust particles: application to ongoing projects of future X-ray missions

    Full text link
    We report on our activities, currently in progress, aimed at performing accelerator experiments with soft protons and hyper-velocity dust particles. They include tests of different types of X-ray detectors and related components (such as filters) and measurements of scattering of soft protons and hyper-velocity dust particles off X-ray mirror shells. These activities have been identified as a goal in the context of a number of ongoing space projects in order to assess the risk posed by environmental radiation and dust and qualify the adopted instrumentation with respect to possible damage or performance degradation. In this paper we focus on tests for the Silicon Drift Detectors (SDDs) used aboard the LOFT space mission. We use the Van de Graaff accelerators at the University of T\"ubingen and at the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg, for soft proton and hyper-velocity dust tests respectively. We present the experimental set-up adopted to perform the tests, status of the activities and some very preliminary results achieved at present time.Comment: Proceedings of SPIE, Vol. 8443, Paper No. 8443-24, 201

    ART-XC: A Medium-energy X-ray Telescope System for the Spectrum-R-Gamma Mission

    Get PDF
    The ART-XC instrument is an X-ray grazing-incidence telescope system in an ABRIXAS-type optical configuration optimized for the survey observational mode of the Spectrum-RG astrophysical mission which is scheduled to be launched in 2011. ART-XC has two units, each equipped with four identical X-ray multi-shell mirror modules. The optical axes of the individual mirror modules are not parallel but are separated by several degrees to permit the four modules to share a single CCD focal plane detector, 1/4 of the area each. The 450-micron-thick pnCCD (similar to the adjacent eROSITA telescope detector) will allow detection of X-ray photons up to 15 keV. The field of view of the individual mirror module is about 18 x 18 arcminutes(exp 2) and the sensitivity of the ART-XC system for 4 years of survey will be better than 10(exp -12) erg s(exp -1) cm(exp -2) over the 4-12 keV energy band. This will allow the ART-XC instrument to discover several thousand new AGNs

    Feedback and feeding in the context of galaxy evolution with SPICA: direct characterization of molecular outflows and inflows

    Get PDF
    A far-infrared observatory such as the {\it SPace Infrared telescope for Cosmology and Astrophysics} ({\it SPICA}), with its unprecedented spectroscopic sensitivity, would unveil the role of feedback in galaxy evolution during the last 10\sim10 Gyr of the Universe (z=1.52z=1.5-2), through the use of far- and mid-infrared molecular and ionic fine structure lines that trace outflowing and infalling gas. Outflowing gas is identified in the far-infrared through P-Cygni line shapes and absorption blueshifted wings in molecular lines with high dipolar moments, and through emission line wings of fine-structure lines of ionized gas. We quantify the detectability of galaxy-scale massive molecular and ionized outflows as a function of redshift in AGN-dominated, starburst-dominated, and main-sequence galaxies, explore the detectability of metal-rich inflows in the local Universe, and describe the most significant synergies with other current and future observatories that will measure feedback in galaxies via complementary tracers at other wavelengths.Comment: This paper belongs to the SPICA Special Issue on PASA. Accepted for publication in PAS

    Characterization of the Particle-induced Background of XMM-Newton EPIC-pn: Short- and Long-term Variability

    Get PDF
    The particle-induced background of X-ray observatories is produced by galactic cosmic ray (GCR) primary protons, electrons, and He ions. Events due to direct interaction with the detector are usually removed by onboard processing. The interactions of these primary particles with the detector environment produce secondary particles that mimic X-ray events from celestial sources, and are much more difficult to identify. The filter-wheel closed data from the XMM-Newton EPIC-pn camera in small window mode (SWM) contains both the X-ray-like background events, and the events due to direct interactions with the primary particles. From this data, we demonstrate that X-ray-like background events are spatially correlated with the primary particle interaction. This result can be used to further characterize and reduce the non-X-ray background in silicon-based X-ray detectors in current and future missions. We also show that spectrum and pattern fractions of secondary particle events are different from those produced by cosmic X-rays

    Design and acoustic tests of the ATHENA WFI filter wheel assembly development model towards TRL5

    Get PDF
    The filter wheel (FW) assembly (FWA), developed by the CBK Institute, is one of the critical subsystems of the wide field imager (WFI) instrument on board the Advanced Telescope for High Energy Astrophysics—mission of the ESA Cosmic Vision 2015-25 space science program (launch scheduled around 2035). The instrument has to collect soft x-rays with very high quantum efficiency, thus WFI requires extremely thin optical blocking filter (OBF). Due to its thickness (∼150 nm) and large area (∼170 mm × 170 mm) needed to achieve a 40 ′ × 40 ′ instrument field of view, the filter is extremely vulnerable to acoustic loads generated during Ariane 6 rocket launch. On the other side, FW mechanism has to provide high overall reliability, so it is more favourable to launch the instrument in atmospheric pressure (without vacuum enclosure for filter protection). Design efforts of the FW subsystem were focused on two issues: providing maximal possible sound pressure level suppression and smallest possible differential pressure across the OBF, which should prevent filters from damaging. We describe the design of a reconfigurable acoustic-demonstrator model (DM) of WFI FWA created for purposes of acoustic testing. Also, the acoustic test campaign is described: test methodology, test criteria, and results discussion and its implication on future FWA design. In general, tests conducted with the FWA DM showed that current design of WFI is feasible and the project can be continued without introducing a vacuum enclosure, which would significantly increase system complexity and mass

    Mitigating the effects of particle background on the Athena Wide Field Imager

    Get PDF
    The Wide Field Imager (WFI) flying on Athena will usher in the next era of studying the hot and energetic Universe. Among Athena’s ambitious science programs are observations of faint, diffuse sources limited by statistical and systematic uncertainty in the background produced by high-energy cosmic ray particles. These particles produce easily identified “cosmic-ray tracks” along with less easily identified signals produced by secondary photons or x-rays generated by particle interactions with the instrument. Such secondaries produce identical signals to the x-rays focused by the optics and cannot be filtered without also eliminating these precious photons. As part of a larger effort to estimate the level of unrejected background and mitigate its effects, we here present results from a study of background-reduction techniques that exploit the spatial correlation between cosmic-ray particle tracks and secondary events. We use Geant4 simulations to generate a realistic particle background signal, sort this into simulated WFI frames, and process those frames in a similar way to the expected flight and ground software to produce a realistic WFI observation containing only particle background. The technique under study, self-anti-coincidence (SAC), then selectively filters regions of the detector around particle tracks, turning the WFI into its own anti-coincidence detector. We show that SAC is effective at improving the systematic uncertainty for observations of faint, diffuse sources, but at the cost of statistical uncertainty due to a reduction in signal. If sufficient pixel pulse-height information is telemetered to the ground for each frame, then this technique can be applied selectively based on the science goals, providing flexibility without affecting the data quality for other science. The results presented here are relevant for any future silicon-based pixelated x-ray imaging detector and could allow the WFI and similar instruments to probe to truly faint x-ray surface brightness

    The eROSITA X-ray telescope on SRG

    Get PDF
    eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is the primary instrument on the Spectrum-Roentgen-Gamma (SRG) mission, which was successfully launched on July 13, 2019, from the Baikonour cosmodrome. After the commissioning of the instrument and a subsequent calibration and performance verification phase, eROSITA started a survey of the entire sky on December 13, 2019. By the end of 2023, eight complete scans of the celestial sphere will have been performed, each lasting six months. At the end of this program, the eROSITA all-sky survey in the soft X-ray band (0.2-2.3 keV) will be about 25 times more sensitive than the ROSAT All-Sky Survey, while in the hard band (2.3-8 keV) it will provide the first ever true imaging survey of the sky. The eROSITA design driving science is the detection of large samples of galaxy clusters up to redshifts z > 1 in order to study the large-scale structure of the universe and test cosmological models including Dark Energy. In addition, eROSITA is expected to yield a sample of a few million AGNs, including obscured objects, revolutionizing our view of the evolution of supermassive black holes. The survey will also provide new insights into a wide range of astrophysical phenomena, including X-ray binaries, active stars, and diffuse emission within the Galaxy. Results from early observations, some of which are presented here, confirm that the performance of the instrument is able to fulfil its scientific promise. With this paper, we aim to give a concise description of the instrument, its performance as measured on ground, its operation in space, and also the first results from in-orbit measurements
    corecore