1,132 research outputs found

    Reducing the Number of Sputum Samples Examined and Thresholds for Positivity: An Opportunity to Optimise Smear Microscopy.

    Get PDF
    SETTING: Urban health clinic, Nairobi. OBJECTIVE: To evaluate the impact on tuberculosis (TB) case detection and laboratory workload of reducing the number of sputum smears examined and thresholds for diagnosing positive smears and positive cases. DESIGN: In this prospective study, three Ziehl-Neelsen stained sputum smears from consecutive pulmonary TB suspects were examined blind. The standard approach (A), > or = 2 positive smears out of 3, using a cut-off of 10 acid-fast bacilli (AFB)/100 high-power fields (HPF), was compared with approaches B, > or = 2 positive smears (> or = 4 AFB/100 HPF) out of 3, one of which is > or = 10 AFB/100 HPF; C, > or = 2 positive smears (> or = 4 AFB/100 HPF) out of 3; D, > or = 1 positive smear (> or = 10 AFB/100 HPF) out of 2; and E, > or = 1 positive smear (> or = 4 AFB/100 HPF) out of 2. The microscopy gold standard was detection of at least one positive smear (> or = 4 AFB/100 HPF) out of 3. RESULTS: Among 644 TB suspects, the alternative approaches detected from 114 (17.7%) (approach B) to 123 cases (19.1%) (approach E) compared to 105 cases (16.3%) for approach A (P < 0.005). Sensitivity ranged between 82.0% (105/128) for A and 96.1% (123/128) for E. The single positive smear approaches reduced the number of smears by 36% compared to approach A. CONCLUSION: Reducing the number of specimens and the positivity threshold to define a positive case increased the sensitivity of microscopy and reduced laboratory workload

    Theoretical tools for atom laser beam propagation

    Full text link
    We present a theoretical model for the propagation of non self-interacting atom laser beams. We start from a general propagation integral equation, and we use the same approximations as in photon optics to derive tools to calculate the atom laser beam propagation. We discuss the approximations that allow to reduce the general equation whether to a Fresnel-Kirchhoff integral calculated by using the stationary phase method, or to the eikonal. Within the paraxial approximation, we also introduce the ABCD matrices formalism and the beam quality factor. As an example, we apply these tools to analyse the recent experiment by Riou et al. [Phys. Rev. Lett. 96, 070404 (2006)]

    Temporal intensity correlation of light scattered by a hot atomic vapor

    Get PDF
    We present temporal intensity correlation measurements of light scattered by a hot atomic vapor. Clear evidence of photon bunching is shown at very short time-scales (nanoseconds) imposed by the Doppler broadening of the hot vapor. Moreover, we demonstrate that relevant information about the scattering process, such as the ratio of single to multiple scattering, can be deduced from the measured intensity correlation function. These measurements confirm the interest of temporal intensity correlation to access non-trivial spectral features, with potential applications in astrophysics

    A slow gravity compensated Atom Laser

    Full text link
    We report on a slow guided atom laser beam outcoupled from a Bose-Einstein condensate of 87Rb atoms in a hybrid trap. The acceleration of the atom laser beam can be controlled by compensating the gravitational acceleration and we reach residual accelerations as low as 0.0027 g. The outcoupling mechanism allows for the production of a constant flux of 4.5x10^6 atoms per second and due to transverse guiding we obtain an upper limit for the mean beam width of 4.6 \mu\m. The transverse velocity spread is only 0.2 mm/s and thus an upper limit for the beam quality parameter is M^2=2.5. We demonstrate the potential of the long interrogation times available with this atom laser beam by measuring the trap frequency in a single measurement. The small beam width together with the long evolution and interrogation time makes this atom laser beam a promising tool for continuous interferometric measurements.Comment: 7 pages, 8 figures, to be published in Applied Physics

    Estimating pore-space gas hydrate saturations from well log acoustic data

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q07008, doi:10.1029/2008GC002081.Relating pore-space gas hydrate saturation to sonic velocity data is important for remotely estimating gas hydrate concentration in sediment. In the present study, sonic velocities of gas hydrate–bearing sands are modeled using a three-phase Biot-type theory in which sand, gas hydrate, and pore fluid form three homogeneous, interwoven frameworks. This theory is developed using well log compressional and shear wave velocity data from the Mallik 5L-38 permafrost gas hydrate research well in Canada and applied to well log data from hydrate-bearing sands in the Alaskan permafrost, Gulf of Mexico, and northern Cascadia margin. Velocity-based gas hydrate saturation estimates are in good agreement with Nuclear Magneto Resonance and resistivity log estimates over the complete range of observed gas hydrate saturations

    Устройство для перемещения датчиков в магнитном поле малогабаритного бетатрона

    Get PDF
    Рассматривается возможность увеличения точности измерений характеристик магнитного поля посредством более точной установки датчиков в исследуемой точке

    Phase behavior and material properties of hollow nanoparticles

    Full text link
    Effective pair potentials for hollow nanoparticles like the ones made from carbon (fullerenes) or metal dichalcogenides (inorganic fullerenes) consist of a hard core repulsion and a deep, but short-ranged, van der Waals attraction. We investigate them for single- and multi-walled nanoparticles and show that in both cases, in the limit of large radii the interaction range scales inversely with the radius, RR, while the well depth scales linearly with RR. We predict the values of the radius RR and the wall thickness hh at which the gas-liquid coexistence disappears from the phase diagram. We also discuss unusual material properties of the solid, which include a large heat of sublimation and a small surface energy.Comment: Revtex, 13 pages with 8 Postscript files included, submitted to Phys. Rev.

    Who I Am: The Meaning of Early Adolescents’ Most Valued Activities and Relationships, and Implications for Self-Concept Research

    Get PDF
    Self-concept research in early adolescence typically measures young people’s self-perceptions of competence in specific, adult-defined domains. However, studies have rarely explored young people’s own views of valued self-concept factors and their meanings. For two major self domains, the active and the social self, this mixed-methods study identified factors valued most by 526 young people from socioeconomically diverse backgrounds in Ireland (10-12 years), and explored the meanings associated with these in a stratified subsample (n = 99). Findings indicate that self-concept scales for early adolescence omit active and social self factors and meanings valued by young people, raising questions about content validity of scales in these domains. Findings also suggest scales may under-represent girls’ active and social selves; focus too much on some school-based competencies; and, in omitting intrinsically salient self domains and meanings, may focus more on contingent (extrinsic) rather than true (intrinsic) self-esteem

    Electrothermal Analyses of Bandpass NGD RLC-Network Topologies

    Get PDF
    This paper develops an original study of temperature effect on the unfamiliar bandpass (BP) negative group delay (NGD) lumped passive circuits. The paper presents the first study of electrothermal analysis of electronic circuits classified as BP-NGD topologies. The considered BP-NGD passive cells are mainly constituted by RLC-resonant networks. The equivalence between two basic BP-NGD topologies constituted by RLC-series and RLC-parallel networks is elaborated via the voltage transfer function (VTF) analogy. Then, the theoretical demonstrations are introduced to define the main specifications as the NGD center frequency, NGD value, attenuation and NGD bandwidth. The electrothermal innovative study is developed based on the temperature coefficient resistor (TCR) of elements constituting the BP-NGD circuits. With proofs of concept of RLC-series and RLC-parallel circuits operating with -500 ns NGD value at 13.56 MHz, calculated and simulated results showing are in excellent agreement. The sensitivity analyses of BP-NGD specifications in function of ambient temperature variation from 0°C to 100°C are investigated. The BP-NGD response variations versus frequency and temperature are characterized with thermo-frequency cartographies and discussed
    corecore