We report on a slow guided atom laser beam outcoupled from a Bose-Einstein
condensate of 87Rb atoms in a hybrid trap. The acceleration of the atom laser
beam can be controlled by compensating the gravitational acceleration and we
reach residual accelerations as low as 0.0027 g. The outcoupling mechanism
allows for the production of a constant flux of 4.5x10^6 atoms per second and
due to transverse guiding we obtain an upper limit for the mean beam width of
4.6 \mu\m. The transverse velocity spread is only 0.2 mm/s and thus an upper
limit for the beam quality parameter is M^2=2.5. We demonstrate the potential
of the long interrogation times available with this atom laser beam by
measuring the trap frequency in a single measurement. The small beam width
together with the long evolution and interrogation time makes this atom laser
beam a promising tool for continuous interferometric measurements.Comment: 7 pages, 8 figures, to be published in Applied Physics