106 research outputs found

    A Modeling Study of the Seasonal, Latitudinal, and Temporal Distribution of the Meteoroid Mass Input at Mars: Constraining the Deposition of Meteoric Ablated Metals in the Upper Atmosphere

    Get PDF
    This study provides a comprehensive description of the deposition of meteor-ablated metals in the upper atmosphere of Mars, accounting for the temporal, vertical, latitudinal, and seasonal distribution. For this purpose, the Leeds Chemical Ablation Model is combined with a meteoroid input function to characterize the size and velocity distributions of three distinctive meteoroid populations around Mars—the Jupiter-family comets (JFCs), main-belt asteroids, and Halley-type comets (HTCs). These modeling results show a significant midnight-to-noon enhancement of the total mass influx because of the orbital dynamics of Mars, with meteoroid impacts preferentially distributed around the equator for particles with diameters below 2000 μm. The maximum total mass input occurs between the northern winter and the first crossing of the ecliptic plane with 2.30 tons sol−1, with the JFCs being the main contributor to the overall influx with up to 56% around Mars' equator. Similarly, total ablated atoms mainly arise from the HTCs with a maximum injection rate of 0.71 tons sol−1 spanning from perihelion to the northern winter. In contrast, the minimum mass and ablated inputs occur between the maximum vertical distance above the ecliptic plane and aphelion with 1.50 and 0.42 tons sol−1, respectively. Meteoric ablation occurs approximately in the range altitude between 100 and 60 km with a strong midnight-to-noon enhancement at equatorial latitudes. The eccentricity and the inclination of Mars' orbit produces a significant shift of the ablation peak altitude at high latitudes as Mars moves toward, or away, from the northern/southern solstices

    The RAD51 and DMC1 homoeologous genes of bread wheat: cloning, molecular characterization and expression analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meiotic recombination in eukaryotes requires two homologues of the <it>E. coli </it>RecA proteins: Rad51 and Dmc1. Both proteins play important roles in the binding of single stranded DNA, homology search, strand invasion and strand exchange. Meiotic recombination has been well studied in Arabidopsis, rice, maize and the orthologues of <it>RAD51 </it>and <it>DMC1 </it>have been characterized. However genetic analysis of the <it>RAD51 </it>and <it>DMC1 </it>genes in bread wheat has been hampered due to the absence of complete sequence information and because of the existence of multiple copies of each gene in the hexaploid wheat genome.</p> <p>Findings</p> <p>In this study we have identified that <it>TaRAD51 </it>and <it>TaDMC1 </it>homoeologues are located on group 7 and group 5 chromosomes of hexaploid wheat, respectively. Comparative sequence analysis of cDNA derived from the <it>TaRAD51 </it>and <it>TaDMC1 </it>homoeologues revealed limited sequence divergence at both the nucleotide and the amino acid level. Indeed, comparisons between the predicted amino acid sequences of <it>TaRAD51 </it>and <it>TaDMC1 </it>and those of other eukaryotes reveal a high degree of evolutionary conservation. Despite the high degree of sequence conservation at the nucleotide level, genome-specific primers for cDNAs of <it>TaRAD51 </it>and <it>TaDMC1 </it>were developed to evaluate expression patterns of individual homoeologues during meiosis. QRT-PCR analysis showed that expression of the <it>TaRAD51 </it>and <it>TaDMC1 </it>cDNA homoeologues was largely restricted to meiotic tissue, with elevated levels observed during the stages of prophase I when meiotic recombination occurs. All three homoeologues of both strand-exchange proteins (<it>TaRAD51 </it>and <it>TaDMC1</it>) are expressed in wheat.</p> <p>Conclusions</p> <p>Bread wheat contains three expressed copies of each of the <it>TaRAD51 </it>and <it>TaDMC1 </it>homoeologues. While differences were detected between the three cDNA homoeologues of <it>TaRAD51 </it>as well as the three homoeologues of <it>TaDMC1</it>, it is unlikely that the predicted amino acid substitutions would have an effect on the protein structure, based on our three-dimensional structure prediction analyses. There are differences in the levels of expression of the three homoeologues of <it>TaRAD51 </it>and <it>TaDMC1 </it>as determined by QRT-PCR and if these differences are reflected at the protein level, bread wheat may be more dependent upon a particular homoeologue to achieve full fertility than all three equally.</p

    MAVEN IUVS observations of the aftermath of the Comet Siding Spring meteor shower on Mars

    Get PDF
    We report the detection of intense emission from magnesium and iron in Mars' atmosphere caused by a meteor shower following Comet Siding Spring's close encounter with Mars. The observations were made with the Imaging Ultraviolet Spectrograph, a remote sensing instrument on the Mars Atmosphere and Volatile EvolutioN spacecraft orbiting Mars. Ionized magnesium caused the brightest emission from the planet's atmosphere for many hours, resulting from resonant scattering of solar ultraviolet light. Modeling suggests a substantial fluence of low-density dust particles 1-100μm in size, with the large amount and small size contrary to predictions. The event created a temporary planet-wide ionospheric layer below Mars' main dayside ionosphere. The dramatic meteor shower response at Mars is starkly different from the case at Earth, where a steady state metal layer is always observable but perturbations caused by even the strongest meteor showers are challenging to detect

    A highly mutagenised barley (cv. Golden Promise) TILLING population coupled with strategies for screening-by-sequencing

    Get PDF
    Background:We developed and characterised a highly mutagenised TILLING population of the barley (Hordeum vulgare) cultivar Golden Promise. Golden Promise is the 'reference' genotype for barley transformation and a primary objective of using this cultivar was to be able to genetically complement observed mutations directly in order to prove gene function. Importantly, a reference genome assembly of Golden Promise has also recently been developed. As our primary interest was to identify mutations in genes involved in meiosis and recombination, to characterise the population we focused on a set of 46 genes from the literature that are possible meiosis gene candidates. Results:Sequencing 20 plants from the population using whole exome capture revealed that the mutation density in this population is high (one mutation every 154 kb), and consequently even in this small number of plants we identified several interesting mutations. We also recorded some issues with seed availability and germination. We subsequently designed and applied a simple two-dimensional pooling strategy to identify mutations in varying numbers of specific target genes by Illumina short read pooled-amplicon sequencing and subsequent deconvolution. In parallel we assembled a collection of semi-sterile mutants from the population and used a custom exome capture array targeting the 46 candidate meiotic genes to identify potentially causal mutations. Conclusions:We developed a highly mutagenised barley TILLING population in the transformation competent cultivar Golden Promise. We used novel and cost-efficient screening approaches to successfully identify a broad range of potentially deleterious variants that were subsequently validated by Sanger sequencing. These resources combined with a high-quality genome reference sequence opens new possibilities for efficient functional gene validation.Miriam Schreiber, Abdellah Barakate, Nicola Uzrek, Malcolm Macaulay, Adeline Sourdille, Jenny Morris, Pete E. Hedley, Luke Ramsay and Robbie Waug

    Analysis of the Basidiomycete Coprinopsis cinerea Reveals Conservation of the Core Meiotic Expression Program over Half a Billion Years of Evolution

    Get PDF
    Coprinopsis cinerea (also known as Coprinus cinereus) is a multicellular basidiomycete mushroom particularly suited to the study of meiosis due to its synchronous meiotic development and prolonged prophase. We examined the 15-hour meiotic transcriptional program of C. cinerea, encompassing time points prior to haploid nuclear fusion though tetrad formation, using a 70-mer oligonucleotide microarray. As with other organisms, a large proportion (∼20%) of genes are differentially regulated during this developmental process, with successive waves of transcription apparent in nine transcriptional clusters, including one enriched for meiotic functions. C. cinerea and the fungi Saccharomyces cerevisiae and Schizosaccharomyces pombe diverged ∼500–900 million years ago, permitting a comparison of transcriptional programs across a broad evolutionary time scale. Previous studies of S. cerevisiae and S. pombe compared genes that were induced upon entry into meiosis; inclusion of C. cinerea data indicates that meiotic genes are more conserved in their patterns of induction across species than genes not known to be meiotic. In addition, we found that meiotic genes are significantly more conserved in their transcript profiles than genes not known to be meiotic, which indicates a remarkable conservation of the meiotic process across evolutionarily distant organisms. Overall, meiotic function genes are more conserved in both induction and transcript profile than genes not known to be meiotic. However, of 50 meiotic function genes that were co-induced in all three species, 41 transcript profiles were well-correlated in at least two of the three species, but only a single gene (rad50) exhibited coordinated induction and well-correlated transcript profiles in all three species, indicating that co-induction does not necessarily predict correlated expression or vice versa. Differences may reflect differences in meiotic mechanisms or new roles for paralogs. Similarities in induction, transcript profiles, or both, should contribute to gene discovery for orthologs without currently characterized meiotic roles

    Don't Forget Your Sister: Directing Double-Strand Break Repair at Meiosis

    No full text

    Methodology for the identification of small molecule inhibitors of the Fanconi Anaemia ubiquitin E3 ligase complex

    Get PDF
    DNA inter-strand crosslinks (ICLs) threaten genomic stability by creating a physical barrier to DNA replication and transcription. ICLs can be caused by endogenous reactive metabolites or from chemotherapeutics. ICL repair in humans depends heavily on the Fanconi Anaemia (FA) pathway. A key signalling step of the FA pathway is the mono-ubiquitination of Fanconi Anaemia Complementation Group D2 (FANCD2), which is achieved by the multi-subunit E3 ligase complex. FANCD2 mono-ubiquitination leads to the recruitment of DNA repair proteins to the site of the ICL. The loss of FANCD2 mono-ubiquitination is a common clinical feature of FA patient cells. Therefore, molecules that restore FANCD2 mono-ubiquitination could lead to a potential drug for the management of FA. On the other hand, in some cancers, FANCD2 mono-ubiquitination has been shown to be essential for cell survival. Therefore, inhibition of FANCD2 mono-ubiquitination represents a possible therapeutic strategy for cancer specific killing. We transferred an 11-protein FANCD2 mono-ubiquitination assay to a high-throughput format. We screened 9,067 compounds for both activation and inhibition of the E3 ligase complex. The use of orthogonal assays revealed that candidate compounds acted via non-specific mechanisms. However, our high-throughput biochemical assays demonstrate the feasibility of using sophisticated and robust biochemistry to screen for small molecules that modulate a key step in the FA pathway. The future identification of FA pathway modulators is anticipated to guide future medicinal chemistry projects with drug leads for human disease
    corecore