110 research outputs found

    Intercalibration of Boreal and Tethyan timescales: the magneto-biostratigraphy of the Middle Triassic and the latest Early Triassic from Spitsbergen, Arctic Norway

    Get PDF
    An integrated bio-magnetostratigraphic study of the latest Early Triassic to the upper parts of the Middle Triassic, at Milne Edwardsfjellet in central Spitsbergen, Svalbard, allows a detailed correlation of Boreal and Tethyan biostratigraphies. The biostratigraphy consists of ammonoid and palynomorph zonations, supported by conodonts, through some 234 m of succession in two adjacent sections. The magnetostratigraphy consists of ten substantive normal–reverse polarity chrons defined by sampling at 150 stratigraphic levels. The magnetization is carried by magnetite and an unidentified magnetic sulphide, and is difficult to fully separate from a strong present-day like magnetization. The bio-magnetostratigraphy from the late Olenekian (Vendomdalen Member) is supplemented by data from nearby Vikinghøgda. The early and mid-Anisian has a high sedimentation rate, comprising over half the ca. 140-m thickness of the Botneheia Formation, whereas the late Anisian and lower Ladinian is condensed into about 20 m. The two latest Boreal Ladinian ammonoid zones are absent due to erosional truncation below the Tschermakfjellet Formation. Correlation to Tethyan bio-magnetostratigraphies shows the traditional base of the Boreal Anisian (base of G. taimyrensis Zone) precedes the base Anisian (using here definitions based on the Desli Caira section in Romania). The Boreal upper Anisian G. rotelliforme and F. nevadanus ammonoid zones correlate to most of the Tethyan Pelsonian and Illyrian substages. The base Ladinian defined in the Tethyan global boundary stratotype and point (GSSP) is closely equivalent to the traditional base of the Boreal Ladinian at the I. oleshkoi Zone. The latest Olenekian to early Anisian magnetic polarity timescale is refined using the Spitsbergen data

    Oxygen as a Driver of Early Arthropod Micro-Benthos Evolution

    Get PDF
    BACKGROUND: We examine the physiological and lifestyle adaptations which facilitated the emergence of ostracods as the numerically dominant Phanerozoic bivalve arthropod micro-benthos. METHODOLOGY/PRINCIPAL FINDINGS: The PO(2) of modern normoxic seawater is 21 kPa (air-equilibrated water), a level that would cause cellular damage if found in the tissues of ostracods and much other marine fauna. The PO(2) of most aquatic breathers at the cellular level is much lower, between 1 and 3 kPa. Ostracods avoid oxygen toxicity by migrating to waters which are hypoxic, or by developing metabolisms which generate high consumption of O(2). Interrogation of the Cambrian record of bivalve arthropod micro-benthos suggests a strong control on ecosystem evolution exerted by changing seawater O(2) levels. The PO(2) of air-equilibrated Cambrian-seawater is predicted to have varied between 10 and 30 kPa. Three groups of marine shelf-dwelling bivalve arthropods adopted different responses to Cambrian seawater O(2). Bradoriida evolved cardiovascular systems that favoured colonization of oxygenated marine waters. Their biodiversity declined during intervals associated with black shale deposition and marine shelf anoxia and their diversity may also have been curtailed by elevated late Cambrian (Furongian) oxygen-levels that increased the PO(2) gradient between seawater and bradoriid tissues. Phosphatocopida responded to Cambrian anoxia differently, reaching their peak during widespread seabed dysoxia of the SPICE event. They lacked a cardiovascular system and appear to have been adapted to seawater hypoxia. As latest Cambrian marine shelf waters became well oxygenated, phosphatocopids went extinct. Changing seawater oxygen-levels and the demise of much of the seabed bradoriid micro-benthos favoured a third group of arthropod micro-benthos, the ostracods. These animals adopted lifestyles that made them tolerant of changes in seawater O(2). Ostracods became the numerically dominant arthropod micro-benthos of the Phanerozoic. CONCLUSIONS/SIGNIFICANCE: Our work has implications from an evolutionary context for understanding how oxygen-level in marine ecosystems drives behaviour

    Alectorioid morphologies in Paleogene lichens : New evidence and re-evaluation of the fossil Alectoria succini Mägdefrau

    Get PDF
    One of the most important issues in molecular dating studies concerns the incorporation of reliable fossil taxa into the phylogenies reconstructed from DNA sequence variation in extant taxa. Lichens are symbiotic associations between fungi and algae and/or cyanobacteria. Several lichen fossils have been used as minimum age constraints in recent studies concerning the diversification of the Ascomycota. Recent evolutionary studies of Lecanoromycetes, an almost exclusively lichen-forming class in the Ascomycota, have utilized the Eocene amber inclusion Alectoria succinic as a minimum age constraint. However, a re-investigation of the type material revealed that this inclusion in fact represents poorly preserved plant remains, most probably of a root. Consequently, this fossil cannot be used as evidence of the presence of the genus Alectoria (Parmeliaceae, Lecanorales) or any other lichens in the Paleogene. However, newly discovered inclusions from Paleogene Baltic and Bitterfeld amber verify that alectorioid morphologies in lichens were in existence by the Paleogene. The new fossils represent either a lineage within the alectorioid group or belong to the genus Oropogon.Peer reviewe

    Changes to the Fossil Record of Insects through Fifteen Years of Discovery

    Get PDF
    The first and last occurrences of hexapod families in the fossil record are compiled from publications up to end-2009. The major features of these data are compared with those of previous datasets (1993 and 1994). About a third of families (>400) are new to the fossil record since 1994, over half of the earlier, existing families have experienced changes in their known stratigraphic range and only about ten percent have unchanged ranges. Despite these significant additions to knowledge, the broad pattern of described richness through time remains similar, with described richness increasing steadily through geological history and a shift in dominant taxa, from Palaeoptera and Polyneoptera to Paraneoptera and Holometabola, after the Palaeozoic. However, after detrending, described richness is not well correlated with the earlier datasets, indicating significant changes in shorter-term patterns. There is reduced Palaeozoic richness, peaking at a different time, and a less pronounced Permian decline. A pronounced Triassic peak and decline is shown, and the plateau from the mid Early Cretaceous to the end of the period remains, albeit at substantially higher richness compared to earlier datasets. Origination and extinction rates are broadly similar to before, with a broad decline in both through time but episodic peaks, including end-Permian turnover. Origination more consistently exceeds extinction compared to previous datasets and exceptions are mainly in the Palaeozoic. These changes suggest that some inferences about causal mechanisms in insect macroevolution are likely to differ as well

    Depositional history of the youngest strata of the Sassendalen Group (Bravaisberget Formation, Middle Triassic-Carnian) in southern Spitsbergen, Svalbard

    No full text
    The Bravaisberget Formation of southern Spitsbergen (the youngest formation of the Sassendalen Group; Middle Triassic–Carnian) comprises a succession of organic-rich and sandy phosphogenic deposits that developed in a marginal part of the Svalbard basin, in response to a high biological productivity event in the Barents Shelf. The basin margin was bounded on the southwest by the elevated structure of the Sørkapp-Hornsund High. North of the high, the subsiding shelf bottom stretched from southern to western Spitsbergen. The organic-rich, fine-grained sedimentation that gave rise to the formation of the Passhatten Member extended southward after the Anisian transgression; it reached the topmost part of the Sørkapp -Hornsund High during the maximum flooding of the basin in the early Ladinian. The sudden appearance of deltaic deposits of the Karentoppen Member directly after the maximum flooding was a consequence of short-lived tectonic activity of the Sørkapp -Hornsund High and the adjacent land area. Reworking and redistribution of the deltaic sediments during the Ladinian brought about the formation of shallow-marine clastic facies of the Somovbreen Member. Decreasing depositional rates close to the Middle-Late Triassic boundary led to a regional hiatus and the formation of a condensed phosphorite horizon at the top of the Somovbreen Member. The sedimentation of the Bravaisberget Formation ended in the early Carnian. The youngest siliciclastic and spiculitic sediments of the Van Keulenfjorden Member were deposited in southern and western Spitsbergen in shallow- to marginal-marine environments

    A review of the order Mantophasmatodea (Insecta)

    No full text
    The newly discovered insect order Mantophasmatodea, known from two Recent species in tropical Africa and some fossils in Baltic amber, is reviewed, with all the material currently known being listed. A new genus and species is described: Praedatophasma maraisi Zompro & Adis, n. gen., n. sp. Complete information available at present on habitats and the biology is given
    corecore