576 research outputs found

    A surface-fitting program for areally- distributed data from the earth sciences and remote sensing

    Get PDF
    Fortran II program for analysis of data from earth sciences and remote sensin

    The shape and erosion of pebbles

    Get PDF
    The shapes of flat pebbles may be characterized in terms of the statistical distribution of curvatures measured along their contours. We illustrate this new method for clay pebbles eroded in a controlled laboratory apparatus, and also for naturally-occurring rip-up clasts formed and eroded in the Mont St.-Michel bay. We find that the curvature distribution allows finer discrimination than traditional measures of aspect ratios. Furthermore, it connects to the microscopic action of erosion processes that are typically faster at protruding regions of high curvature. We discuss in detail how the curvature may be reliable deduced from digital photographs.Comment: 10 pages, 11 figure

    Competition between benthic cyanobacteria and diatoms as influenced by different grain sizes and temperatures

    Get PDF
    An experimental laboratory set-up was used to study the influence of different grain size compositions and temperatures on the growth of benthic cyanobacteria and diatoms, and on the competition between these 2 groups. Monospecific cultures of 3 species of cyanobacteria (Merismopedia punctata, Microcoleus chthonoplastes, Oscillatoria limosa), and of 2 species of benthic diatoms (Phaeodactylum tricornutum and Nitzschia sp.) were used. The organisms were cultured in 100 ml flasks filled with medium and 3 different kinds of sediment: (1) Sand (fine sand, 63 to 200 µm), (2) Mud-I (mixed fine sand and mud <63 µm in the ratio 80:20 wt %), (3) Mud-II (mixed fine sand and mud in the ratio 50:50 wt %). Experimental temperatures were 10, 15 and 25°C. At 10°C and 15°C, both diatom species achieved the highest biomass on the sediments of the finest grain size (50 wt % < 63 µm) while cyanobacteria achieved low biomass levels. Coarsening of sediments at the same temperature levels revealed a gradually lower biomass of the diatoms. Particularly on sand, the diatoms never reached the same concentrations of chlorophyll a as on mud. The cyanobacteria, on the other hand, had the highest biomass on sand at 15°C. In the competition experiments the benthic diatom species Nitzschia sp. dominated all types of sediments at 10°C and 15°C. The experiments at 25°C were dominated by the filamentous cyanobacterium M. chthonoplastes. This indicates the importance of abiotic conditions for the distribution and abundance of benthic phototrophic micro-organisms

    New methods for unmixing sediment grain size data

    Get PDF
    Grain size distribution (GSD) data are widely used in Earth sciences and although large data sets are regularly generated, detailed numerical analyses are not routine. Unmixing GSDs into components can help understand sediment provenance and depositional regimes/processes. End-member analysis (EMA), which fits one set of end-members to a given data set, is a powerful way to unmix GSDs into geologically meaningful parts. EMA estimates end-members based on covariability within a data set and can be considered as a nonparametric approach. Available EMA algorithms, however, either produce suboptimal solutions or are time consuming. We introduce unmixing algorithms inspired by hyperspectral image analysis that can be applied to GSD data and which provide an improvement over current techniques. Nonparametric EMA is often unable to identify unimodal grain size subpopulations that correspond to single sediment sources. An alternative approach is single-specimen unmixing (SSU), which unmixes individual GSDs into unimodal parametric distributions (e.g., lognormal). We demonstrate that the inherent nonuniqueness of SSU solutions renders this approach unviable for estimating underlying mixing processes. To overcome this, we develop a new algorithm to perform parametric EMA, whereby an entire data set can be unmixed into unimodal parametric end-members (e.g., Weibull distributions). This makes it easier to identify individual grain size subpopulations in highly mixed data sets. To aid investigators in applying these methods, all of the new algorithms are available in AnalySize, which is GUI software for processing and unmixing grain size data

    What is in a pebble shape?

    Get PDF
    We propose to characterize the shapes of flat pebbles in terms of the statistical distribution of curvatures measured along the pebble contour. This is demonstrated for the erosion of clay pebbles in a controlled laboratory apparatus. Photographs at various stages of erosion are analyzed, and compared with two models. We find that the curvature distribution complements the usual measurement of aspect ratio, and connects naturally to erosion processes that are typically faster at protruding regions of high curvature.Comment: Phys. Rev. Lett. (to appear

    The impact of biological bedforms on near-bed and subsurface flow: a laboratory evaluated numerical study of flow in the vicinity of pits and mounds

    Get PDF
    The complex surface topography of river substrates controls near-bed hydraulics and drives the exchange of subsurface and surface flow. In rivers, the topographic structures that are studied are usually formed by the flow but, it is known that many animals also create biogenic bedforms, such as pits and mounds. Here, a Large-Eddy Simulation (LES) model of flow over a pit and a mound is evaluated with flume experiments. The model includes actual bedform topography, and the topographic complexity of the surrounding bed surface. Subsurface grains are organized in a body-centered cubic packing arrangement. Model evaluation showed strong agreement between experimental and modelling results for velocity (R2 > 0.8) and good agreement for Reynolds stresses (R2 > 0.7), which is comparable to other similar studies. Simulation of the pit shows that the length of the downwelling region is smaller than the upwelling region and that the velocity magnitude is higher in the downwelling region. Simulation of the mound reveals that the flow is forced into the bed upstream of the mound and re-emerges near the top of the mound. The recirculation zone is limited at the leeside of the mound. With increasing Reynolds number, the depth of the upwelling region at the leeside of the mound increases. The analysis of shear stress indicates that sediments on the upstream edge of the pit and on the downstream face of the mound are relatively unstable. These results demonstrate the effect of biogenic structures on the near-bed flow field, hyporheic exchange, and sediment stability

    A wave-induced transport process in marine sediments

    Full text link
    Shows how surface wave action can increase the rate of transport of solutes into a sandy seabed by orders of magnitude via a mechanism known as mechanical dispersion. It is most effective for large sediment permeability and thickness, high surface wave amplitude, and shallow water. A method for setting up the appropriate transport equation, valid when dispersion is well developed, is given. The effect of surface wave action on transport into sediments on the eastern US shelf is shown to be significant under certain conditions. The effect on thawing of subsea permafrost beneath Prudhoe Bay, Alaska, seems negligible. -from Author

    Jet-induced cratering of a granular surface with application to lunar spaceports

    Full text link
    The erosion of lunar soil by rocket exhaust plumes is investigated experimentally. This has identified the diffusion-driven flow in the bulk of the sand as an important but previously unrecognized mechanism for erosion dynamics. It has also shown that slow regime cratering is governed by the recirculation of sand in the widening geometry of the crater. Scaling relationships and erosion mechanisms have been characterized in detail for the slow regime. The diffusion-driven flow occurs in both slow and fast regime cratering. Because diffusion-driven flow had been omitted from the lunar erosion theory and from the pressure cratering theory of the Apollo and Viking era, those theories cannot be entirely correct.Comment: 13 pages, link to published version: http://cedb.asce.org/cgi/WWWdisplay.cgi?090000
    • …
    corecore