91 research outputs found
Field Infestation of Phaseolus vulgaris by Acanthoscelides obtectus (Coleoptera: Bruchidae), Parasitoid Abundance, and Consequences for Storage Pest Control
Over a period of 3 yr we collected 19 samples (1 kg each) of recently harvested beans (Phaseolus vulgaris L.) from eight small-scale farms in Restrepo, Valle de Cauca, Colombia. Initial infestation by Acanthoscelides obtectus (Say) was low, but frequent. At harvest, 90% of the bean samples were infested by the weevil. The average level of infestation was 16 weevils per 1,000 beans, with a maximum of 55 weevils. Infested beans usually carried multiple larvae with a maximum of 13 larvae per bean. Emergence data indicate that oviposition by A. obtectus in the field is confined to a very short period before harvest. This relatively narrow time window can be exploited for proper timing of control measures. Only one species of parasitoid, Horismenus ashmeadii (Dalla Torre) (Hymenoptera: Eulophidae), was recorded, emerging from 21% of the samples. Samples with parasitoids had an average of five parasitoids per 1,000 beans, with a maximum of 12 parasitoids. This represented a parasitization level of 18%. During the 16 wk of storage, two weevil generations emerged, which caused visible damage in 0.5 and 34% of the beans (average of 14%). Although H. ashmeadii was successful in attacking the first generation of A. obtectus in the field, it failed to attack or develop under storage conditions. This indivates H. ashmeadii cannot serve as a postharvest control agen
Do natural enemies really make a difference? Field scale impacts of parasitoid wasps and hoverfly larvae on cereal aphid populations
Naturally occurring predators and parasitoids are known to reduce the abundance of pest invertebrates in arable crops, yet current treatment thresholds do not account for such a contribution to pest management.
In the present study, we provide evidence for the presence of natural enemies correlating with a subsequent reduction in pest population growth.
The abundance of cereal aphid pests and two key aphidophagous natural enemies, parasitoid wasps (Aphidiinae) and hoverfly larvae (Syrphinae), was assessed at field boundaries and interiors in southeast England.
The highest rate of aphid population growth was associated with locations where no natural enemies were found. The presence of either Aphidiinae wasps or predatory Syrphinae larvae was associated with a reduction in the rate of aphid population growth, irrespective of location within the field, and overall aphid population growth was negatively correlated with increasing natural enemy abundance.
The results of the present study indicate that natural enemies contribute significantly to pest control, and provide further evidence supporting the use of management strategies for promoting natural enemies in agro-ecosystems.
Aphid predators and parasitoids make an important contribution to aphid pest control within cereal fields, and thresholds for insecticide application should account for this to avoid unnecessary treatments
Associative learning and memory retention of nectar yeast volatiles in a generalist parasitoid
Understanding how animals learn is crucial to interpreting animal behaviour. Flower-visiting insects, such as bees and parasitoids, are excellent animal models to study visual and olfactory learning, including memory phenomena. The diversity of resources flower-visiting insects exploit predisposes them to learn and remember the colours, shapes and odours associated with rewarding experiences (e.g. flowers), allowing them to focus on the most rewarding resources. Recent research has shown that nectar-living microbes release volatile organic compounds (VOCs) that contribute to overall flower scent. Nevertheless, little is known about the extent to which nectar microbiota mediate insect learning of floral preferences. In this study, we investigated whether VOCs produced by nectar microbes serve as a learning cue to parasitoids and how long any developed preference is maintained. Experiments were performed using the generalist aphid parasitoid Aphidius ervi and three nectar yeasts, including the nectar specialist Metschnikowia reukaufii and the generalist species Hanseniaspora uvarum and Sporobolomyces roseus. Results showed that naïve parasitoids had an innate preference for nectar fermented by the nectar specialist M. reukaufii, but not by the other two yeasts which had either a neutral (H. uvarum) or deterrent (S. roseus) effect. When parasitoids were conditioned with yeast-fermented nectar, they were strongly attracted to their odours 2 and 24h after conditioning, but not after 48h. Furthermore, when parasitoids were conditioned to one yeast-fermented nectar, they also showed increased attraction to other yeast-fermented nectars. This generalization suggests that their learning ability may have broader ecological consequences. However, this generalized response to other yeast VOCs lasted for only 2h. We conclude that parasitoids show conditioned responses to the scent of yeast-fermented nectar, and yeasts, therefore, may play an important but understudied role in shaping their foraging behaviour
Induced plant defences in biological control of arthropod pests: a double‐edged sword
Biological control is an important ecosystem service delivered by natural enemies. Together with breeding for plant defence, it constitutes one of the most promising alternatives to pesticides for controlling herbivores in sustainable crop production. Especially induced plant defences may be promising targets in plant breeding for resistance against arthropod pests. Because they are activated upon herbivore damage, costs only incur when defence is needed. Moreover, they can be more specific than constitutive defences. Nevertheless, inducible defence traits that are harming plant pest organisms may interfere with biological control agents, such as predators and parasitoids. Despite the vast fundamental knowledge on plant defence mechanisms and their effects on natural enemies, our understanding on the feasibility of combining biological control with induced plant defence in practice is relatively poor. In this review, we focus on arthropod pest control and present the most important features of biological control with natural enemies and of induced plant defence. Furthermore, we show potential synergies and conflicts among them and finally, identify gaps and list opportunities for their combined use in crop protection. We suggest that breeders should focus on inducible resistance traits that are compatible with the natural enemies of arthropod pests, specifically traits that facilitate communities of natural enemies to build-up.<br/
Humic acid enhances the growth of tomato promoted by endophytic bacterial strains through the activation of hormone-, growth-, and transcription-related processes
Plant growth-promoting bacteria (PGPB) are promising alternatives in the reduction of the use of chemical fertilizers. Likewise, humic acid (HA) can improve plant growth and/or the establishment of endophytic PGPB. Although the effects of PGPB colonization or HA treatment have been studied separately, little information is available on plant response to the combined applications of PGPB and HA. Thus, the aim of this work was to understand the physiological effects, bacterial colonization and transcriptional responses activated by endophytic bacterial strains in tomato roots and shoots in the absence (control condition) and presence of HA (HA condition). Tomato shoot length was promoted by seed inoculation with Paraburkholderia phytofirmans PsJN, Pantoea agglomerans D7G, or Enterobacter sp. 32A in the presence of HA, indicating a possible complementation of PGPB and HA effects. Tomato colonization by endophytic bacterial strains was comparable in the control and HA condition. The main transcriptional regulations occurred in tomato roots and the majority of differentially expressed genes (DEGs) was upregulated by endophytic bacterial strains in the HA condition. Half of the DEGs was modulated by two or three strains as possible common reactions to endophytic bacterial strains, involving protein metabolism, transcription, transport, signal transduction, and defense. Moreover, strain-specific tomato responses included the upregulation of signal transduction, transcription, hormone metabolism, protein metabolism, secondary metabolism, and defense processes, highlighting specific traits of the endophyte-tomato interaction. The presence of HA enhanced the upregulation of genes related to signal transduction, hormone metabolism, transcription, protein metabolism, transport, defense, and growth-related processes in terms of number of involved genes and fold change values. This study provides detailed information on HA-dependent enhancement of growth-related processes stimulated by endophytic bacterial strains in tomato plants and reports the optimized dosages, complementation properties and gene markers for the further development of efficient PGPB- and HA-based biostimulant
DNA methylation is associated with codon degeneracy in a species of bumblebee
Social insects display extreme phenotypic differences between sexes and castes even though the underlying genome can be almost identical. Epigenetic processes have been proposed as a possible mechanism for mediating these phenotypic differences. Using whole genome bisulfite sequencing of queens, males, and reproductive female workers we have characterised the sex- and caste-specific methylome of the bumblebee Bombus terrestris. We have identified a potential role for DNA methylation in histone modification processes which may influence sex and caste phenotypic differences. We also find differentially methylated genes generally show low levels of DNA methylation which may suggest a separate function for lowly methylated genes in mediating transcriptional plasticity, unlike highly methylated genes which are usually involved in housekeeping functions. We also examined the relationship between the underlying genome and the methylome using whole genome re-sequencing of the same queens and males. We find DNA methylation is enriched at zero-fold degenerate sites. We suggest DNA methylation may be acting as a targeted mutagen at these sites, providing substrate for selection via non-synonymous changes in the underlying genome. However, we did not see any relationship between DNA methylation and rates of positive selection in our samples. In order to fully assess a possible role for DNA methylation in adaptive processes a specifically designed study using natural population data is needed.</p
Identification and application of bacterial volatiles to attract a generalist aphid parasitoid: from laboratory to greenhouse assays
BACKGROUND
Recent studies have shown that microorganisms emit volatile compounds that affect insect behaviour. However, it remains largely unclear whether microbes can be exploited as a source of attractants to improve biological control of insect pests. In this study, we used a combination of coupled gas chromatography‐electroantennography (GC–EAG) and Y‐tube olfactometer bioassays to identify attractive compounds in the volatile extracts of three bacterial strains that are associated with the habitat of the generalist aphid parasitoid Aphidius colemani, and to create mixtures of synthetic compounds to find attractive blends for A. colemani. Subsequently, the most attractive blend was evaluated in two‐choice cage experiments under greenhouse conditions.
RESULTS
GC–EAG analysis revealed 20 compounds that were linked to behaviourally attractive bacterial strains. A mixture of two EAG‐active compounds, styrene and benzaldehyde applied at a respective dose of 1 μg and 10 ng, was more attractive than the single compounds or the culture medium of the bacteria in Y‐tube olfactometer bioassays. Application of this synthetic mixture under greenhouse conditions resulted in significant attraction of the parasitoids, and outperformed application of the bacterial culture medium.
CONCLUSION
Compounds isolated from bacterial blends were capable of attracting parasitoids both in laboratory and greenhouse assays, indicating that microbial cultures are an effective source of insect attractants. This opens new opportunities to attract and retain natural enemies of pest species and to enhance biological pest control
Conditioning Individual Mosquitoes to an Odor: Sex, Source, and Time
Olfactory conditioning of mosquitoes may have important implications for vector-pathogen-host dynamics. If mosquitoes learn about specific host attributes associated with pathogen infection, it may help to explain the heterogeneity of biting and disease patterns observed in the field. Sugar-feeding is a requirement for survival in both male and female mosquitoes. It provides a starting point for learning research in mosquitoes that avoids the confounding factors associated with the observer being a potential blood-host and has the capability to address certain areas of close-range mosquito learning behavior that have not previously been described. This study was designed to investigate the ability of the southern house mosquito, Culex quinquefasciatus Say to associate odor with a sugar-meal with emphasis on important experimental considerations of mosquito age (1.2 d old and 3–5 d old), sex (male and female), source (laboratory and wild), and the time between conditioning and testing (<5 min, 1 hr, 2.5 hr, 5 hr, 10 hr, and 24 hr). Mosquitoes were individually conditioned to an odor across these different experimental conditions. Details of the conditioning protocol are presented as well as the use of binary logistic regression to analyze the complex dataset generated from this experimental design. The results suggest that each of the experimental factors may be important in different ways. Both the source of the mosquitoes and sex of the mosquitoes had significant effects on conditioned responses. The largest effect on conditioning was observed in the lack of positive response following conditioning for females aged 3–5 d derived from a long established colony. Overall, this study provides a method for conditioning experiments involving individual mosquitoes at close range and provides for future discussion of the relevance and broader questions that can be asked of olfactory conditioning in mosquitoes
Testing the optimal defence hypothesis for two indirect defences: extrafloral nectar and volatile organic compounds
Many plants respond to herbivory with an increased production of extrafloral nectar (EFN) and/or volatile organic compounds (VOCs) to attract predatory arthropods as an indirect defensive strategy. In this study, we tested whether these two indirect defences fit the optimal defence hypothesis (ODH), which predicts the within-plant allocation of anti-herbivore defences according to trade-offs between growth and defence. Using jasmonic acid-induced plants of Phaseolus lunatus and Ricinus communis, we tested whether the within-plant distribution pattern of these two indirect defences reflects the fitness value of the respective plant parts. Furthermore, we quantified photosynthetic rates and followed the within-plant transport of assimilates with 13C labelling experiments. EFN secretion and VOC emission were highest in younger leaves. Moreover, the photosynthetic rate increased with leaf age, and pulse-labelling experiments suggested transport of carbon to younger leaves. Our results demonstrate that the ODH can explain the within-plant allocation pattern of both indirect defences studied
- …