20 research outputs found

    Evidence and Implications for the Regional Climate

    Get PDF
    Abstract This paper presents a detailed review of atmospheric pollution observed in the Hindu Kush–Himalaya (HKH) region and its implications for regional climate. Data from in situ measurements made at high-altitude stations in the HKH region, observations from satellite-based instruments, and global climate modeling study results are discussed. Experimental observations discussed include both atmospheric measurements and data from snow and ice core sampling from different glaciers in the HKH region. The paper focuses on the atmospheric brown cloud loadings over the Himalayas, particularly black carbon (BC) and ozone, which have links to regional climate and air-pollution–related impacts. Studies show elevated levels of anthropogenic ozone and BC over the Himalayas during the pre-monsoon season with concentrations sometimes similar to those observed over an average urban environment. The elevated concentration observed over the Himalayas is thought to come from the lowlands, especially the highly populat..

    On the Possible Wind Energy Contribution for Feeding a High Altitude Smart Mini Grid

    Get PDF
    The use of renewable energy sources to increase electricity access, especially in remote areas as high mountains, is a possible contribution to poverty reduction, climate change mitigation and improved resilience. In this paper an evaluation of the wind potential of a remote area in Nepal is performed, using CFD methods and the simulation of a micro wind turbine projected by Perugia University. With an accurate analysis of wind data and air density effects it is possible to test energy production potential in areas with high average wind speed. The overall estimated production for each turbine is an interesting result and an easily exportable contribution to the perspective of sustainable development at very high altitudes and remote areas

    Spatial distribution of debris thickness and melting from remote-sensing and meteorological data, at debris-covered Baltoro glacier, Karakoram, Pakistan

    Get PDF
    AbstractA distributed surface energy-balance study was performed to determine sub-debris ablation across a large part of Baltoro glacier, a wide debris-covered glacier in the Karakoram range, Pakistan. The study area is ~124km2. The study aimed primarily at analyzing the influence of debris thickness on the melt distribution. The spatial distribution of the physical and thermal characteristics of the debris was calculated from remote-sensing (ASTER image) and field data. Meteorological data from an automatic weather station at Urdukas (4022ma.s.l.), located adjacent to Baltoro glacier on a lateral moraine, were used to calculate the spatial distribution of energy available for melting during the period 1–15 July 2004. The model performance was evaluated by comparisons with field measurements for the same period. The model is reliable in predicting ablation over wide debris-covered areas. It underestimates melt rates over highly crevassed areas and water ponds with a high variability of the debris thickness distribution in the vicinity, and over areas with very low debris thickness (<0.03 m). We also examined the spatial distribution of the energy-balance components (global radiation and surface temperature) over the study area. The results allow us to quantify, for the study period, a meltwater production of 0.058 km3

    Trophic condition of the volcanic Lake Nemi (Central Italy): environmental factors and planktonic communities in a changing environment

    Get PDF
    Lake Nemi is an interesting case of anthropogenic overexploitation which has caused its progressive environmental deterioration in the past decades. On this lake historical data about the trophic situation are available from 1975 to 1984. The research performed in 2002-03, about ten years after the diversion of urban waste waters, concerned a biological investigation on the phyto- and zooplanktonic communities, integrated with a physico-chemical analysis. The aims of our study are to evaluate the current water quality of the lake and compare it with the water quality observed in 1982-1983, when all biotic and abiotic components indicated a heavily compromised hypereutrophic condition. The water quality data and the comparison with a previous study point out that the biological aspects have partially changed (increased number of Cyanobacteria and phytoplanktonic taxa, particularly Clorophyta and Dinophyta; zooplankton composition changed at a species level, with the appearance of taxa associated to light trophic conditions), and the physico-chemical conditions significantly improved. The mean transparency, dissolved oxygen, nutrients and chlorophyll-a concentrations have all improved. Mean annual temperature at different depths increased, probably due to differences in climatic period and the lowering of the lake surface level (from 32.5 to 27.5 m in 1982 and 2002, respectively). Our results indicate a general improving trend in water quality is taking place since the diversion of waste water discharges. The present abiotic characteristics of the lake allow the phytoplankton to distribute itself in the whole epilimnion, and the zooplankton in the whole water column. A possible further improvement is hypothesized, and the constraints represented by excessive water level lowering and water temperature increasing are also discussed

    Transport of Stratospheric Air Masses to the Nepal Climate Observatory–Pyramid (Himalaya; 5079 m MSL): A Synoptic-Scale Investigation

    Get PDF
    AbstractThis work analyzes and classifies stratospheric airmass transport events (ST) detected at the Nepal Climate Observatory–Pyramid (NCO-P; 27°57′N, 86°48′E, 5079 m MSL) Global Atmospheric Watch–World Meteorological Organization station from March 2006 to February 2008. For this purpose, in situ ozone (O3), meteorological parameters (atmospheric pressure and relative humidity), and black carbon (BC) are analyzed. The paper describes the synoptic-scale meteorological scenarios that are able to favor the development of ST over the southern Himalaya, by analyzing the meteorological fields provided by the ECMWF model (geopotential height, wind speed, and potential vorticity), satellite Ozone Monitoring Instrument data (total column ozone), and three-dimensional back trajectories calculated with the Lagrangian Analysis Tool (LAGRANTO) model. The study, which represents the first "continuous" classification of ST in the southern Himalaya, permitted classification of 94% of ST days within four synoptic-scale scenarios: stratospheric potential vorticity structures (PVS), subtropical jet stream (SJS), quasi-stationary ridges (QSR), and monsoon depressions (MD). SJS and PVS were the most frequent scenarios (48% and 30% of occurrences, respectively), QSR occurred for 12% of the ST days, and MD were detected only during the monsoon season (3%). SJS and PVS scenarios presented a peak frequency during the nonmonsoon seasons, when the jet stream and westerly disturbances influence atmospheric circulation over the southern Himalaya. During the identified ST, significant variations of O3 (+24%) and BC (−56%) were recorded relative to the averaged 2-yr mean values. On average, PVS and SJS were the most effective synoptic-scale scenarios in modifying the O3 and BC levels at NCO-P from postmonsoon to premonsoon seasons, and ST is one of the leading processes in defining the "background" BC variability at NCO-P

    A new challenge for meteorological measurements: The meteoMet project-Metrology for meteorology

    Get PDF
    Climate change and its consequences require immediate actions in order to safeguard the environment and economy in Europe and in the rest of world. Aiming to enhance data reliability and reduce uncertainties in climate observations, a joint research project called MeteoMet-Metrology for Meteorology started in October 2011 coordinated by the Italian Istituto Nazionale di Ricerca Metrologica (INRiM). The project is focused on the traceability of measurements involved in climate change: surface and upper air measurements of temperature, pressure, humidity, wind speed and direction, solar irradiance and reciprocal influences between measurands. This project will provide the first definition at the European level of validated climate parameters with associated uncertainty budgets and novel criteria for interpretation of historical data series. The big challenge is the propagation of a metrological measurement perspective to meteorological observations. When such an approach will be adopted the requirement of reliable data and robust datasets over wide scales and long terms could be better met. © 2013 AIP Publishing LLC

    Inventory of glaciers and glacial lakes of the Central Karakoram National Park (CKNP &#8211; Pakistan)

    Get PDF
    This study presents a map reporting valuable information on the cryosphere of the Central Karakoram National Park (CKNP, the largest protected area of Pakistan and the highest park in the world). All the information is provided considering the CKNP as a whole, and in detail by dividing it into five basins (i.e. Shigar, Hunza, Shyok, Upper Indus, and Gilgit). The glacier inventory reports 608 ice bodies covering 3680 km2 ( 3c35% of the CKNP area), with a total glacier volume of ca. 532 km3. In addition, we modeled the meltwater from glacier ice ablation over the period 23 July to 9 August 2011. The total melt amount is ca. 1.5 km3. Finally, we considered glacial lakes (202 water-bodies, covering 4 km2). For these latter glacier features, we also analyzed their potentially dangerous conditions and two lakes were found having such conditions

    Inventory of glaciers and glacial lakes of the central Karakoram National Park (Pakistan) as a contribution to know and manage mountain freshwater resource.

    Get PDF
    In this study, we reported valuable information on the cryosphere of the Central Karakoram National Park (CKNP, the largest protected area of Pakistan and the highest park all over the world). In fact, in addition to the glacier inventory, we also estimated the glacier volume and we modeled the amount of meltwater derived from glacier ice ablation during a 18-day summer period (23 July–9 August 2011, time window where also field melt measurements were performed thus enabling a crosscheck of the obtained results). Moreover, glacial lakes were considered as well; for these latter glacier features we also analyzed their potentially dangerous conditions. All these information are given considering the CKNP as a whole and in detail by dividing it into five basins (i.e. Shigar, Hunza, Shyok, Upper Indus and Gilgit). As regards the CKNP as a whole, 608 glaciers are found with a total area of 3682.1 ± 61.0 km2, ~35% of the CKNP area. Analyzing in detail the five basins included in the CKNP area, they reflect the overall conditions regarding glacier distribution per size class, terminus elevation, length, and thickness. The widest basin (for number of ice bodies, glacier extent and ice volume) is the Shigar basin, where the largest glaciers are present (among which Baltoro Glacier), and the smallest one is the Gilgit basin. Finally, the highest number of debris-covered glaciers is located in the Shyok basin (62 glaciers). During 18 days in summer 2011, we quantified a total water magnitude of 1.54 km3 derived from ice melting. Even if we considered a relatively short period, this water volume equals ~11% of the reservoir capacity of the Tarbela Dam. In addition to glacier information, we provided glacial lake occurrence, as these ephemeral water bodies can develop into actual glacial risk conditions, which makes it important to list them and to survey them over time. The information reported in this study would provide base for future monitoring of glacial lakes and GLOFs and for planning and prioritizing disaster mitigation efforts in the park. In fact, even if the Potentially Dangerous Glacial Lakes (PDGLs) identified in the park territory are only 2, they are located in a high vulnerable and fragile area and the recent history suggests us to survey over time these water bodies to avoid losses of human lives and destructions of villages and communities. Moreover, many other supraglacial lakes identified in the park area could develop into conditions of PDGLs thus suggesting to prosecute the lake monitoring and to develop early strategies for risk mitigations and disaster management

    Future hydrological regimes and glacier cover in the Everest region: The case study of the upper Dudh Koshi basin

    Get PDF
    Assessment of future water resources under climate change is required in the Himalayas, where hydrological cycle is poorly studied and little understood. This study focuses on the upper Dudh Koshi river of Nepal (151 km2, 4200–8848 m a.s.l.) at the toe of Mt. Everest, nesting the debris covered Khumbu, and Khangri Nup glaciers (62 km2). New data gathered during three years of field campaigns (2012–2014) were used to set up a glacio-hydrological model describing stream flows, snow and ice melt, ice cover thickness and glaciers' flow dynamics. The model was validated, and used to assess changes of the hydrological cycle until 2100. Climate projections are used from three Global Climate Models used in the recent IPCC AR5 under RCP2.6, RCP4.5 and RCP8.5. Flow statistics are estimated for two reference decades 2045–2054, and 2090–2099, and compared against control run CR, 2012–2014. During CR we found a contribution of ice melt to stream flows of 55% yearly, with snow melt contributing for 19%. Future flows are predicted to increase in monsoon season, but to decrease yearly (− 4% vs CR on average) at 2045–2054. At the end of century large reduction would occur in all seasons, i.e. − 26% vs CR on average at 2090–2099. At half century yearly contribution of ice melt would be on average 45%, and snow melt 28%. At the end of century ice melt would be 31%, and snow contribution 39%. Glaciers in the area are projected to thin largely up to 6500 m a.s.l. until 2100, reducing their volume by − 50% or more, and their ice covered area by − 30% or more. According to our results, in the future water resources in the upper Dudh Koshi would decrease, and depend largely upon snow melt and rainfall, so that adaptation measures to modified water availability will be required

    Il portale GeoNetwork di SHARE Un catalogo condiviso di metadati a servizio delle ricerche in alta montagna

    No full text
    <p>Il progetto SHARE (Stations at High Altitude for Research on the Environment) del Comitato Ev-K2-CNR promuovela realizzazione di un servizio di accesso alle ricerche dedicate agli ambienti di alta quota attraverso la piattaformaGeoNetwork. La condivisione di dati e metadati che avviene attraverso l’ambiente dedicato, di cui questo articolopresenta la prima fase di realizzazione, permette alla comunità scientifica e all’utente interessato di seguire lostato delle conoscenze ambientali in tema di cambiamenti climatici anche attraverso l’accesso diretto ai dati.</p><p><strong>SHARE GeoNetwork portal, a shared catalog  of  metadata  for research  in high mountain</strong></p><p>The  need  to  share  information  and data in science finds a ready answer in new technology in the development of Internet  access  services  structured  ac-cording to standards that guarantee the accessibility to the scientific community. In this context it is being realized at the Ev-K2-CNR  Commitee  a  platform  for web services based on the architecture of GeoNetwork Opensource for the re-alization of the data and metadata cata-log  dedicated  to  the  high  altitude  re-search. This activity is one of the themes of  scientific  and  technological  research project SHARE (Stations at High Altitude for Research on the Environment). The first phase of the project was dedicated to  the  completion  of  the  cataloging system  of  climate  observatories  and weather  stations in  high mountain re-gions  included  in  the  SHARE  program that acquire the data, some of which are transmitting  from  the  highest  peaks  in the world, and available in real time for the SHARE researchers and the scientific community.</p
    corecore