434 research outputs found

    Coherent bubble-sum approximation for coupled-channel resonance scattering

    Get PDF
    For coupled-channel resonance scattering we derive a model with a closed form solution for the TT-matrix that satisfies unitarity and analyticity. The two-channel case is handled explicitly for an arbitrary number of resonances. The method focuses on the expansion of the transition matrix elements, Γ(s)\Gamma(s), in known analytical functions. The appropriate hadronic form factors and the related energy shifts can be determined from the scattering data. The differences between this method and the KK-matrix and the Breit-Wigner approximation are illustrated in the case of the S11S_{11} resonances S11(1535)S_{11}(1535) and S11(1650)S_{11}(1650).Comment: 8 pages, 1 figure, code available from http://www.phyast.pitt.edu/~norbertl/bubblegum2

    Contact guidance enhances the quality of a tissue engineered corneal stroma

    Get PDF
    Corneal stroma is a very complex structure, composed of 200 lamellae of oriented collagen fibers. This highly complex nature of cornea is known to be important for its transparency and mechanical integrity. Thus, an artificial cornea design has to take into account this complex structure. In this study, behavior of human corneal keratocytes on collagen films patterned with parallel channels was investigated. Keratocytes proliferated well on films and reached confluency after 7 days in the incubation medium. Nearly all of the cells responded to the patterns and were aligned in contrast to the cells on unpatterned surfaces. Collagen type I and keratan sulfate secreted by keratocytes on patterned films appeared to be aligned in the direction of the patterns. The films showed an intermediate degradation over the course of a month. On the whole, transparency of the films increased with degradation and decreased by the presence of the cells. The decrease was, however, low and transparency level was maintained on the patterned films while on the unpatterned films a sharp decrease in transparency was followed by an improvement. This was due to the more organized distribution of cells and the oriented secretion of extracellular matrix molecules on patterned collagen films. Thus, these results suggest that application of contact guidance in cornea tissue engineering may facilitate the remodeling process, hence decrease the rehabilitation period. © 2007 Wiley Periodicals, Inc

    The S11NS_{11}- N(1535) and N-N(1650) Resonances in Meson-Baryon Unitarized Coupled Channel Chiral Perturbation Theory

    Get PDF
    The ss-wave meson-baryon scattering is analyzed for the strangeness S=0 sector in a Bethe-Salpeter coupled channel formalism incorporating Chiral Symmetry. Four channels have been considered: πN\pi N, ηN\eta N, KΛK \Lambda, KΣK \Sigma. The needed two particle irreducible matrix amplitude is taken from lowest order Chiral Perturbation Theory in a relativistic formalism and low energy constants are fitted to the elastic πN\pi N phase-shifts and the πpηn\pi^- p \to \eta n and πpK0Λ\pi^- p \to K^0 \Lambda cross section data. The position of the complex poles in the second Riemann sheet of the scattering amplitude determine masses and widths of the S11S_{11}- NN(1535) and N-N(1650) resonances, in reasonable agreement with experiment. A good overall description of data, from πN\pi N threshold up to 2 GeV, is achieved keeping in mind that the two pion production channel has not been included.Comment: 35 pages, LaTeX + 7 ps-figure files. Some minor mistakes have been corrected for and a new appendix discussing the matching to HBChPT has been also adde

    Modulation of Cellular Colonization of Porous Polyurethane Scaffolds via the Control of Pore Interconnection Size and Nanoscale Surface Modifications.

    Get PDF
    Full-scale cell penetration within porous scaffolds is required to obtain functional connective tissue components in tissue engineering applications. For this aim, we produced porous polyurethane structures with well-controlled pore and interconnection sizes. Although the influence of the pore size on cellular behavior is widely studied, we focused on the impact of the size of the interconnections on the colonization by NIH 3T3 fibroblasts and Wharton's jelly-derived mesenchymal stem cells (WJMSCs). To render the material hydrophilic and allow good material wettability, we treated the material either by plasma or by polydopamine (PDA) coating. We show that cells weakly adhere on these surfaces. Keeping the average pore diameter constant at 133 μm, we compare two structures, one with LARGE (52 μm) and one with SMALL (27 μm) interconnection diameters. DNA quantification and extracellular matrix (ECM) production reveal that larger interconnections is more suitable for cells to move across the scaffold and form a three-dimensional cellular network. We argue that LARGE interconnections favor cell communication between different pores, which then favors the production of the ECM. Moreover, PDA treatment shows a truly beneficial effect on fibroblast viability and on matrix production, whereas plasma treatment shows the same effect for WJMSCs. We, therefore, claim that both pore interconnection size and surface treatment play a significant role to improve the quality of integration of tissue engineering scaffolds.journal article2019 Jun 052019 05 24importe

    Transcriptomics and proteomics reveal two waves of translational repression during the maturation of malaria parasite sporozoites.

    Get PDF
    Plasmodium sporozoites are transmitted from infected mosquitoes to mammals, and must navigate the host skin and vasculature to infect the liver. This journey requires distinct proteomes. Here, we report the dynamic transcriptomes and proteomes of both oocyst sporozoites and salivary gland sporozoites in both rodent-infectious Plasmodium yoelii parasites and human-infectious Plasmodium falciparum parasites. The data robustly define mRNAs and proteins that are upregulated in oocyst sporozoites (UOS) or upregulated in infectious sporozoites (UIS) within the salivary glands, including many that are essential for sporozoite functions in the vector and host. Moreover, we find that malaria parasites use two overlapping, extensive, and independent programs of translational repression across sporozoite maturation to temporally regulate protein expression. Together with gene-specific validation experiments, these data indicate that two waves of translational repression are implemented and relieved at different times during sporozoite maturation, migration and infection, thus promoting their successful development and vector-to-host transition

    Chiral unitary approach to S-wave meson baryon scattering in the strangeness S=0 sector

    Get PDF
    We study the S-wave interaction of mesons with baryons in the strangeness S=0 sector in a coupled channel unitary approach. The basic dynamics is drawn from the lowest order meson baryon chiral Lagrangians. Small modifications inspired by models with explicit vector meson exchange in the t-channel are also considered. In addition the pi pi N channel is included and shown to have an important repercussion in the results, particularly in the isospin 3/2 sector.Comment: 23 pages, LaTeX, 21 figure

    Patterns of Hybrid Loss of Imprinting Reveal Tissue- and Cluster-Specific Regulation

    Get PDF
    Background: Crosses between natural populations of two species of deer mice, Peromyscus maniculatus (BW), and P. polionotus (PO), produce parent-of-origin effects on growth and development. BW females mated to PO males (bw6po) produce growth-retarded but otherwise healthy offspring. In contrast, PO females mated to BW males (PO6BW) produce overgrown and severely defective offspring. The hybrid phenotypes are pronounced in the placenta and include PO6BW conceptuses which lack embryonic structures. Evidence to date links variation in control of genomic imprinting with the hybrid defects, particularly in the PO6BW offspring. Establishment of genomic imprinting is typically mediated by gametic DNA methylation at sites known as gDMRs. However, imprinted gene clusters vary in their regulation by gDMR sequences. Methodology/Principal Findings: Here we further assess imprinted gene expression and DNA methylation at different cluster types in order to discern patterns. These data reveal PO6BW misexpression at the Kcnq1ot1 and Peg3 clusters, both of which lose ICR methylation in placental tissues. In contrast, some embryonic transcripts (Peg10, Kcnq1ot1) reactivated the silenced allele with little or no loss of DNA methylation. Hybrid brains also display different patterns of imprinting perturbations. Several cluster pairs thought to use analogous regulatory mechanisms are differentially affected in the hybrids. Conclusions/Significance: These data reinforce the hypothesis that placental and somatic gene regulation differs significantly, as does that between imprinted gene clusters and between species. That such epigenetic regulatory variatio

    Differential cross section measurement of eta photoproduction on the proton from threshold to 1100 MeV

    Get PDF
    The differential cross section for the reaction p(gamma, eta p) has been measured from threshold to 1100 MeV photon laboratory energy. For the first time, the region of the S11(1535) resonance is fully covered in a photoproduction experiment and allows a precise extraction of its parameters at the photon point. Above 1000 MeV, S-wave dominance vanishes while a P-wave contribution is observed whose nature will have to be clarified. These high precision data together with the already measured beam asymmetry data will provide stringent constraints on the extraction of new couplings of baryon resonances to the eta meson.Comment: 10 pages, 5 figures, submitted to Phys. Letters B. Typos corrected. Some more information on the S11(1535) parameter

    What is the structure of the Roper resonance?

    Get PDF
    We investigate the structure of the nucleon resonance N^*(1440) (Roper) within a coupled-channel meson exchange model for pion-nucleon scattering. The coupling to pipiN states is realized effectively by the coupling to the sigmaN, piDelta and rhoN channels. The interaction within and between these channels is derived from an effective Lagrangian based on a chirally symmetric Lagrangian, which is supplemented by well known terms for the coupling of the Delta isobar, the omega meson and the 'sigma', which is the name given here to the strong correlation of two pions in the scalar-isoscalar channel. In this model the Roper resonance can be described by meson-baryon dynamics alone; no genuine N^*(1440) (3 quark) resonance is needed in order to fit piN phase shifts and inelasticities.Comment: 55 pages, 14 figure

    Micro-Raman study of crichtonite group minerals enclosed into mantle garnet

    Get PDF
    We report the first comprehensive micro-Raman study of crichtonite group minerals (CGM) as inclusions in pyropic garnet grains from peridotite and pyroxenite mantle xenoliths of the Yakutian kimberlites as well as in garnet xenocrysts from the Aldan shield lamprophyres (Russia). The CGM form (i) morphologically oriented needles, lamellae, and short prisms and (ii) optically unoriented subhedral to euhedral grains, either single or intergrown with other minerals. We considered common mantle-derived CGM species (like loveringite, lindsleyite, and their analogues), with Ca, Ba, or Sr dominating in the dodecahedral A site and Zr or Fe in the octahedral B site. The Raman bands at the region of 600–830 cm−1 are indicative of CGM and their crystal-chemical distinction, although the intensity and shape of the bands appear to be dependent on laser beam power and wavelength. The factor-group analysis based on the loveringite crystal structure showed the octahedral and tetrahedral cation groups with 18f and 6c Wyckoff positions, namely, dominantly TiO6 and to a lower extent CrO6, MgO4, and FeO4 groups, to be the major contributors to the Raman spectral features. The ionic groups with dodecahedral (M0) and octahedral (M1) coordination are inactive for Raman scattering while active in infrared absorption. A number of observed Raman modes in the CGM spectra are several times lower than that predicted by the factor group analysis. The noticed broadening of modes in the CGM Raman spectra may result from a combining of bands at the narrow frequency shift regions. Solid solution behavior, luminescence, and partial metamictization of the CGM may exert additional influence on the Raman band shape. The Raman spectral features showed CGM to be accurately identified and distinguished from other Ti-, Fe-, Cr-, and Zr-containing oxides (e.g., ilmenite or those of spinel and magnetoplumbite groups) occurring as accessory mantle minerals. © 2020 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons LtdRussian Science Foundation, RSF: 18‐77‐10062Council on grants of the President of the Russian FederationThis study was supported by the Russian Science Foundation (Grant 18‐77‐10062). The equipment of the Ural Center for Shared Use «Modern Nanotechnology», Ural Federal University, and the Analytical Center for Multi‐elemental and Isotope Research, IGM, was used. Sampling was supported by the Russian Federation state assignment project of IGM. We are grateful to Nikolai V. Sobolev for Samples O‐173, O‐39, and O‐264. Vladimir N. Korolyuk, Elena N. Nigmatulina (IGM), and Allan Patchen (UT) are highly appreciated for the help with EMP analyses. We express our sincere thanks to F. Nestola and an anonymous reviewer for their thorough reviews and helpful suggestions, and to C. Marshall for regardful editorial handling of the manuscript on every stage of its revision
    corecore