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I. INTRODUCTION

The N(1535) and N(1650) resonances appear as outstanding features not only in elastic
πN scattering in the strangeness zero S11 (L2T,2J) partial wave but also in other meson-
baryon reactions at intermediate energies. In quark model approaches these excited nucleon
resonances are mainly composites of three valence quarks, and their widths are computed
as matrix elements of hadronic transition operators. However, the description of hadron
scattering reactions becomes cumbersome in this framework, and it requires quite elaborated
techniques as the resonating group approach, where it becomes extremely difficult to impose
Chiral Symmetry (CS) [1].

Renouncing to find out a picture of the hadron as a valence quark bound state, a different
point of view consists of describing scattering reactions taking the hadrons as the relevant
degrees of freedom at low energies. Then, resonances manifest themselves as poles of the
scattering amplitude in a certain Riemann sheet in the complex energy plane. To perform
such a program requires to implement unitarity in the model. A multichannel K−matrix
method is used in the work of Ref. [2]. Though CS is not incorporated, this phenomenological
approach is able to reproduce a large amount of data related to the πN → πN reaction.
The, three body final state, two pion production channel ππN is incorporated through an
effective use of two body channels with higher mesonic and baryonic resonances. In this
paper, we will work in this latter type of approaches, but explicitly imposing CS constraints
as an indirect way of incorporating the bulk of the underlying Quantum Chromo Dynamics
(QCD). Thus, we will establish a unitarity scheme based on the Chiral Perturbation Theory
(ChPT) amplitudes.

CS provides important constraints to the description of low energy hadronic processes
and, in particular, to baryon-meson dynamics. There have been previous studies of the
πN− S11 partial wave using a coupled channel formalism and imposing CS constraints. In
Ref. [3] a Schrödinger coupled channel treatment was employed and the additional inclusion
of phenomenological hadronic form factors was invoked. Within this framework, the p−wave
contribution has also been recently examined [4]. The two pion production channel is not
considered in these works. Perturbative estimates [5]– [7] for the reaction πN → ππN
indicate that this three-body channel keeps moderately small not only at threshold but also
in a certain region above it. An attempt to include the two pion production reaction can be
found in Ref. [8], but the treatment of the ππN channel is effective and it is represented by
a unphysical two body channel which represents all remaining processes.

In Ref. [9] the Bethe-Salpeter Equation (BSE) has been employed in the spirit of an
Effective Field Theory (EFT). There, the ππN channel is not considered either and the
authors require the introduction of less renormalization constants than allowed by CS. De-
spite of these restrictions, the model describes not only the elastic πN channel, but also the
two-body inelastic ones in an energy window around the N(1535) resonance. Nevertheless,
it fails at threshold [10]. Given this partial success and the great technical difficulties to
solve the BSE incorporating the three body ππN channel, one might wonder what features
of the data can be explained incorporating CS constraints and restoring two body unitarity.

In the present work, we restrict our study to the non-strange meson-baryon S11 partial
wave and adopt a similar framework as in those references, but with some important differ-
ences. First, we will implement exact unitarity by solving the BSE taking the needed input
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from lowest order relativistic ChPT. A similar program has been successfully undertaken
both in the pion-pion sector [11] and in the πN−P33 partial wave [12]. Thus, we avoid the
use of phenomenological form-factors and all required information (low energy constants)
can be, in principle, obtained from higher orders in the chiral expansion. Besides, we aim
at describing not only a narrow energy window, placed at threshold or in the neighborhood
of some resonance, but also a wider energy region ranging from πN threshold up to almost
a Center of Mass (CM) meson-baryon energy of

√
s = 2 GeV.

As we discussed at length in Ref. [11] the BSE, in the context of EFT’s, can be solved
in two different schemes: off-shell and on-shell. Here, we use the off-shell scheme because
of the lack of information on the next-to-leading order in the chiral expansion. In this
scheme, the on-shell scattering amplitude requires some knowledge of the off-shell behavior
of the two particle irreducible amplitude (potential). After renormalization of the amplitude
this off-shell input leads to a finite number of phenomenological constants which encode the
detailed underlying short-distance dynamics. In practice, these constants can be either fitted
to experiment or determined by matching the resulting Bethe-Salpeter (BS) amplitude to
standard ChPT1. Obviously, the method of determining the constants by matching to ChPT
seems a better one than a direct fit to experimental data2. For the case of meson-baryon
scattering, the only known information coming from ChPT involves tree-level amplitudes
and free propagators; there is no possibility to compare with ChPT beyond leading order
and thus one is forced to fit the unknown low energy constants (LEC’s) to data.

As it is the case in the purely mesonic sector, the off-shell scheme generates a rich struc-
ture of unknown constants which allow for a good description of the amplitudes. Although
the appearance of more undetermined constants may appear a less predictive approach as,
say, putting a cut-off (one single parameter) in the divergent integrals as it is done in Ref. [9],
it reflects the real state of the art of our lack of knowledge on underlying QCD dynamics.
The number of adjustable LEC’s should not be smaller than those allowed by symmetry;
this is the only way both to falsify all possible theories embodying the same symmetry prin-
ciples and to make wider the energy window which is being described. Limiting such a rich
structure allowed by CS results in a poor description of experimental data.

Before going further we would like also to say a word on the opposite situation, i.e.,
the possibility of having more low energy parameters than one actually needs. A possible
redundancy of parameters is obviously a undesirable situation. In standard ChPT the
number of LEC’s is controlled to any order of the calculation by crossing and unitarity.
Moreover, the dependence of the observables on them is strictly linear, so that it becomes

1Ideally, these phenomenological parameters should be computed from first principles, a yet im-

possible task.

2In addition, if the matching is possible the off-shell scheme becomes unnecessarily complicated,

as compared to other methods directly unitarizing the final on-shell amplitude given in terms of

the standard low energy constants. For details, on the on-shell BSE approach or on the Inverse

Amplitude Method (IAM) for meson-meson scattering, see for instance, the thorough discussion in

the second entry of Ref. [11]. For πN elastic scattering, recent IAM studies have been pursued in

Refs. [13] and [14].
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possible to detect such a redundant combination in case it occurs3. In a unitarized approach,
the only way to avoid this parameter redundancy is to match the unitarized amplitude to
the standard ChPT amplitude. As we have already said, there is no standard one loop
ChPT calculation for the S11 partial wave of meson-baryon reaction with open channels to
compare with. An indirect way to detect such a parameter redundancy might be through a
fit to experimental data if the errors in some parameters turn out to be very large.

We have considered four coupled channels: πN , ηN , KΛ, KΣ and taken into account
SU(3)−breaking symmetry effects but neglected the considerably smaller isospin violation
ones. We have found that CS allows for a solution of the BSE which is flexible enough
to describe the elastic πN phase-shifts, and the π−p → ηn and π−p → K0Λ cross section
data from threshold to CM energies well above the N(1650) resonance. Besides the rest of
elastic and inelastic two-body reaction channels4 implicit in the adopted formalism come
as predictions of the model. The position of the complex poles in the second Riemann
sheet of the amplitudes determine masses and widths of the S11− N(1535) and −N(1650)
resonances, which turn out to be in reasonable agreement with experiment. Preliminary
results were presented in [18].

The paper is organized as follows: In Sect. II we present the basic formalism used along
the paper. We start with the chiral Lagrangian relevant to our calculation, from which
the lowest order meson-baryon two particle irreducible matrix amplitude is deduced. After
presenting our notations for the coupled channel kinematics we discuss the basic pertinent
features of the BSE for s−wave meson-baryon scattering. Using the amplitude from lowest
order ChPT as the potential, we solve and renormalize the BSE in the spirit of an EFT.
In Sect. III we present our numerical results, together with a detailed discussion on the
fitting procedure and Monte-Carlo propagation of inherited error bars to all possible reaction
channels. The quantum field theoretical interpretation of resonances as unstable particles
requires determining their mass and width as poles in a unphysical Riemann sheet. In
our case there are 16 sheets which we discuss in some detail, and we search for the most
important pole singularities. Error estimates are made in terms of the available experimental
uncertainties in the phase-shifts and amplitudes. Finally, in Sect. IV we present some
conclusions and outlook for future work.

3A good example of this is ππ scattering to two loops ( [15], [16]) where one gets, besides the

four one loop parameters l̄1,2,3,4, six new parameters but in redundant combinations. Instead, it

is customary to use the six b̄1,2,3,4,5,6 independent combinations, which depend on the one loop l̄’s

and the six new two loop parameters and contain mixed orders. Such a situation also takes place

in πN scattering in HBChPT at fourth order [17]

4Each of the entries of the 4 × 4 matrix solution of the BSE is the T−scattering amplitude for a

meson-baryon reaction constructed out of the four considered channels: πN → πN , πN → ηN ,

πN → KΛ, πN → KΣ, ηN → ηN , ηN → KΛ, ηN → KΣ, KΛ → KΛ, KΛ → KΣ, KΣ → KΣ

and the reverse processes.
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II. THEORETICAL FRAMEWORK

A. Chiral Baryon-Meson Lagrangian

At lowest order in the chiral expansion the chiral baryon meson Lagrangian contains
kinetic and mass baryon pieces and meson-baryon interaction terms and is given by [19]

L1 = Tr
{

B̄ (i /∇−MB) B
}

+
1

2
DTr

{

B̄γµγ5 {uµ, B}
}

+
1

2
F Tr

{

B̄γµγ5[uµ, B]
}

, (1)

The meson kinetic and mass pieces and the baryon mass chiral corrections are second order
and read

L2 =
f 2

4
Tr
{

u†µu
µ + (U †χ + χ†U)

}

− b0Tr(χ+)Tr(B̄B)− b1Tr(B̄χ+B)− b2Tr(B̄Bχ+) (2)

where “Tr” stands for the trace in SU(3). In addition,

∇µB = ∂µB +
1

2
[ u†∂µu + u∂µu

† , B ] ,

U = u2 = ei
√

2Φ/f , uµ = iu†∂µUu†

χ+ = u†χu† + uχ†u , χ = 2B0M (3)

MB is the common mass of the baryon octect, due to spontaneous chiral symmetry breaking
for massless quarks. The SU(3) coupling constants which are determined by semileptonic
decays of hyperons are F ∼ 0.46, D ∼ 0.79 (F + D = gA = 1.25). The constants B0

and f (pion weak decay constant in the chiral limit) are not determined by the symmetry.
The current quark mass matrix is M = Diag(mu, md, ms). The parameters b0, b1 and b2

are coupling constants with dimension of an inverse mass. The values of b1 and b2 can
be determined from baryon mass splittings, whereas b0 gives an overall contribution to the
octect baryon mass MB. The SU(3) matrices for the meson and the baryon octect are
written in terms of the meson and baryon spinor fields respectively and are given by5

Φ =







1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η







, (4)

and

B =







1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ







. (5)

5For the purpose of our work we do not consider any mixing between octect and singlet SU(3)

representations
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respectively. The MB →MB vertex obtained from the former Lagrangian reads6

LMB→MB =
i

4f 2
Tr
{

B̄γµ [ [ Φ , ∂µΦ ] , B ]
}

. (6)

Assuming isospin conservation, the scattering amplitude7 in the Dirac spinor basis, which
relation to the cross section is given in the next subsection, at lowest order is given by

t
(1)
P (k, k′) =

D

f 2
(/k + /k′) (7)

where k and k′ are incoming and outgoing meson momenta and D a coupled-channel matrix.
For strangeness S = 0 and isospin T = 1/2 the coupled channel matrix D reads8

πN ηN KΛ KΣ

D
T=1/2
S=0 =

1

4








−2 0 −3/2 +1/2
0 0 +3/2 +3/2
−3/2 +3/2 0 0
+1/2 +3/2 0 −2








πN
ηN
KΛ
KΣ

(8)

While amplitudes follow the chiral symmetry breaking pattern from the effective La-
grangian to a good approximation, it is well known that physical mass splittings have an
important influence when calculating the reaction phase space. Indeed, the correct loca-
tion of reaction thresholds requires taking physical masses for the corresponding reaction
channels. We have taken into account this effect in our numerical calculation. Besides,
chiral corrections to the amplitudes also incorporate explicit CS breaking effects in addition
to those already present in the lagrangians above. In practice, we use different numerical
values for fπ , fK and fη, as it is discussed in Sect. III. This can be easily accomplished
through the prescription

D/f 2 → f̂−1Df̂−1 , f̂ ≡ Diag (fπ, fη, fK , fK) (9)

For simplicity and a more clear book-keeping of chiral order dependences we will use the
D/f 2 notation throughout the paper, meaning Eq. (9) in practice.

6We have omitted the pieces proportional to the couplings D and F because they do not contribute

to s−wave. On the other hand, the lagrangian below does not lead to a pure s−wave contribution

and a further projection will be required.

7We use the convention, in symbolic notation, −iTMB→MB = +iLMB→MB .

8 There is a mistake in the relative phases of Ref. [3]. We thank A. Ramos for confirming this

point to us. We use the isospin phase convention of Ref. [20]: negative phases for the isospin states

−|π+〉 , −|K̄0〉 , −|Σ+〉, −|Ξ−〉 , −|Σ−〉 , −|n̄〉.
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B. Scattering Amplitude and Kinematics

The coupled channel scattering amplitude for the baryon-meson process in the isospin
channel, T = 1

2

B(MA, P − k, sA) + M(mA, k)→ B(MB, P − k′, sB) + M(mB, k′) (10)

with baryon (meson) masses MA and MB ( mA and mB ) and spin indices (helicity, covariant
spin, etc...) sA, sB, is given by

TP [B{k′, sB} ← A{k, sA}] = ūB(P − k′, sB)tP (k, k′)uA(P − k, sA) (11)

Here, uA(P−k, sA) and uB(P−k′, sB) are baryon Dirac spinors9 for the ingoing and outgoing
baryons respectively, P is the conserved total four momentum and tP (k, k′) is a matrix in the
Dirac and coupled channel spaces. On the mass shell and using the equations of motion for
the free Dirac spinors ( /P−/k−MA)uA(P−k) = 0 and its transposed ūA(P−k)( /P−/k−MA) =
0 the parity and Lorentz invariant amplitude tP can be written as:

tP (k, k′)|on−shell = t1(s, t) /P + t2(s, t) (12)

with s = P 2 = /P 2, t = (k − k′)2 and t1 and t2 matrices in the coupled channel space. The
normalization of the amplitude TP is determined by its relation to the CM differential cross
section, and it is given above threshold, s > Max{(MA + mA)2, (MB + mB)2}, by

dσ

dΩ
[B{kB, sB} ← A{kA, sA}] =

1

64π2s

|~kB|
|~kA|
|TP [B{kB, sB} ← A{kA, sA}] |2 (13)

Rotational, parity and time reversal invariances ensure for the on shell particles

TP [{kB, sB} ← {kA, sA}] = −8π
√

s

√
√
√
√
|~kA|
|~kB|

{

A(s, θ)δsAsB
+ iB(s, θ) (n̂ · ~σ)sBsA

}

(14)

A and B are matrices in the coupled channel space, θ the CM angle between the initial
and final meson three momenta and n̂ a unit three-vector orthogonal to ~kA and ~kB. Partial
waves (matrices in the coupled channel space), fJ

L(s), are related to A,B by [21]

A(s, θ) =
∑

L

[

(L + 1) f
L+ 1

2

L (s) + L f
L− 1

2

L (s)
]

PL(cos θ)

B(s, θ) = −
∑

L

[

f
L+ 1

2

L (s)− f
L− 1

2

L (s)
]

dPL(cos θ)

dθ
(15)

In terms of the matrices t1 and t2 defined in Eq. (12), the s−wave coupled-channel matrix,

f
1
2

0 (s), is given by:

9We use the normalization ūu = 2M .
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[

f
1
2

0 (s)
]

B←A
= − 1

8π
√

s

√
√
√
√
|~kB|
|~kA|

√

EB + MB

√

EA + MA

[
1

2

∫ 1

−1
d cos θ

(√
s t1(s, t) + t2(s, t)

)

BA

]

(16)

where the CM three–momentum moduli read

|~ki| =
λ

1

2 (s, Mi, mi)

2
√

s
i = A, B (17)

with λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz and EA,B the baryon CM energies. The
phase of the matrix TP is such that the relation between the diagonal elements (A = B) in

the coupled channel space of f
1
2

0 (s) and the inelasticities (η) and phase-shifts (δ) is the usual
one,

[

f
1
2

0 (s)
]

AA
=

1

2i|~kA|
(

ηA(s)e2iδA(s) − 1
)

(18)

Hence, the optical theorem reads, for s ≥ (MA + mA)2,

4π

|~kA|
Im

[

f
1
2

0 (s)
]

AA
=
∑

B

σB←A = 4π
∑

B

∣
∣
∣
∣

[

f
1
2

0 (s)
]

BA

∣
∣
∣
∣

2

= σAA +
π

|~kA|2
(

1− η2
A

)

(19)

where in the right hand side only open channels contribute.

C. Bethe-Salpeter Equation

The Bethe-Salpeter equation reads

tP (k, k′) = vP (k, k′) + i
∫

d4q

(2π)4
tP (q, k′)∆(q)S(P − q)vP (k, q) (20)

where tP (k, k′) is the scattering amplitude defined in Eq. (11), and vP (k, k′) the two particle
irreducible Green’s function (or potential ), and S(P − q) and ∆(q) the baryon and meson
exact propagators respectively. The above equation turns out to be a matrix one, both in
the coupled channel and Dirac spaces. The resulting scattering amplitude tP (k, k′) fulfills
the coupled channel unitarity condition

tP (k, k′)− t̄P (k′, k) = −i(2π)2
∫

d4q

(2π)4

×tP (q, k′) δ+
[

q2 − m̂2
] (

/P − q/ + M̂
)

δ+
[

(P − q)2 − M̂2
]

t̄P (q, k) (21)

where t̄P (k, p) = γ0t
†
P (k, p)γ0 and t†P (k, p) stands for the total adjoint in the Dirac and

coupled channel spaces (including also the change s + iǫ→ s− iǫ) and m̂ and M̂ the meson
and baryon (diagonal) mass matrices respectively. Finally, δ+(p2 −m2) = Θ(p0)δ(p2 −m2),
being Θ the Heaviside step function.
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If the on shell amplitude depends only on the total momentum10 P , tP (k, k′)|on−shell =
t( /P ), as it will be the case below, the unitarity condition can be rewritten in a much simpler
and useful form as a discontinuity equation above the corresponding physical thresholds

Disc[t( /P )−1] = −Disc[J( /P )] with Disc[A(s)] ≡ A(s + iǫ)−A(s− iǫ) (22)

where the quadratic and logarithmically divergent integral

J( /P ) = i
∫

d4q

(2π)4

1

q2 − m̂2

1

/P − q/− M̂
(23)

has been introduced and Cutkosky’s rules used to evaluate its discontinuity. This integral
is treated in detail in Appendix A. As usual, we take the iǫ prescription m̂2 → m̂2 − iǫ and
M̂ → M̂ − iǫ which we implicitly assume in the sequel.

D. Solution of the BSE Equation at lowest order

The BSE requires some input potential and baryon and meson propagators to be solved.
We proceed here along the lines proposed in previous work [11] and use a chiral expansion
to determine both potential and propagator. From the chiral Lagrangian one gets at lowest
order (Eq. (7))

vP (k, k′) = t
(1)
P (k, k′) =

D

f 2
(/k + /k′) (24)

with D the coupled-channel matrix, which was given in Eq. (8). The propagators at lowest
order are simply the free ones,

∆(q) =
1

q2 − m̂2
, S(P − q) =

1

/P − q/− M̂
(25)

which are diagonal in the coupled channel space. Once we have approximate expressions
for both the potential and the meson and baryon propagators, we proceed to exactly solve
the BSE. Second order Born approximation to the solution of the BSE (i.e. approximating
tP (q, k′) in the kernel of the equation by vP (q, k′) ) suggests the following form for the exact
solution:

tP (k, k′) = a( /P ) + /k′bR( /P ) + bL( /P )/k + /k′c( /P )/k (26)

where a,bR,bL and c are Lorentz scalar matrices in the Dirac and the coupled channel spaces.
At this lowest order of the BSE approach, these matrices only depend on /P , thus they turn
out to be independent of the Mandelstam variable t.

10It is to say, the functions t1 and t2 in Eq. (12) do not depend on the Mandelstam variable t.
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P - k ’

k k
,

k k
,

. . .

q

P - k P - k’ P - k

FIG. 1. Diagrams summed by the Bethe Salpeter equation at lowest order. Kinematics defined in the

main text.

Such an amplitude contains an infinite sum of diagrams, as shown in Fig. 1, but does
not contain all possible one loop dependences, for instance those coming from vertex renor-
malization. On the mass shell we may set /k → /P − M̂ and /k′ → /P − M̂ . Hence, thanks to
the equations of motion the on-shell amplitude becomes a function of the total momentum
/P and reads

t( /P ) = a + (/P − M̂) bR + bL ( /P − M̂) + (/P − M̂) c ( /P − M̂) (27)

where the explicit dependence on /P of the a, bR, bL, c matrix functions has been suppressed
for simplicity.

Plugging the ansatz for the off-shell amplitude, tP (k, k′), as given in Eq. (26) into the
BSE equation and after some algebraic manipulations described in detail in the Appendix B,
we get for the inverse on-shell amplitude

t( /P )−1 = −J( /P ) +
∆m̂

/P − M̂
+ A−1

A =
1

f 2
{/P − M̂, D}+ +

1

f 4
( /P − M̂)D

∆m̂

/P − M̂
D( /P − M̂) = µ(s) + ν(s) /P

µ(s) =
1

f 4

{

− [D, M̂ ]
M̂∆m̂

s− M̂2
[D, M̂ ]− f 2{M̂, D}+ −D∆m̂DM̂ + [D, M̂ ]∆m̂D

}

ν(s) =
1

f 4

{

− [M̂, D]
∆m̂

s− M̂2
[M̂, D] + D∆m̂D + 2f 2D

}

(28)

As we can see, the on-shell unitarity condition expressed in Eq.(22) is manifestly fulfilled.
To proceed further we can decompose the inverse on-shell amplitude in the form

t( /P )−1 = K1(s) /P + K2(s) (29)

where K1(s) and K2(s) are matrices in the coupled channel space. Straightforward calcula-
tion yields,

K1(s) = −s− m̂2 + M̂2

2s
J0(s) +

∆m̂

s− M̂2
− ∆m̂M̂

2s
+ (νs− µν−1µ)−1

K2(s) = −M̂J0(s) +
M̂∆m̂

s− M̂2
− (νsµ−1ν − µ)−1 (30)

9



Thus, the amplitude can be written in the form of Eq. (12)

t( /P ) = t1(s) /P + t2(s) (31)

with

t1 = (K1s−K2K
−1
1 K2)

−1

t2 = (K2 −K1K
−1
2 K1s)

−1 (32)

As we already said, when the two particle irreducible amplitude,vP , and the meson and
baryon propagators entering in the BSE, the lowest ChPT order ones are taken, the matrices
(in the coupled channel spaces) t1 and t2 turn out to be independent of the t−Mandelstam
variable11. Hence the angle integral in Eq. (16) becomes trivial and apart from kinematical
factors, the relevant combination entering in the s−wave scattering amplitude is

t(s) = t1(s)
√

s + t2(s) =
(

K1(s)
√

s + K2(s)
)−1

(33)

After some algebraic reshuffling the expression for the inverse coupled channel matrix am-
plitude can conveniently be written as

t(s)−1 = −(
√

s + M̂)2 − m̂2

2
√

s
Ĵ0(s) +

∆m̂√
s− M̂

− ∆m̂M̂

2
√

s

+

[

1

f 2

{√
s− M̂, D

}

+
+

1

f 4

(√
s− M̂

)

D
∆m̂√
s− M̂

D
(√

s− M̂
)
]−1

(34)

Finally, the s−wave coupled-channel matrix amplitude f
1
2

0 (s) reads,

[

f
1
2

0 (s)
]

BA
= − 1

8π
√

s

√
√
√
√
|~kB|
|~kA|

√

EB + MB

√

EA + MA

[

t(s)
]

BA
(35)

At this point we have to renormalize the divergent integrals appearing in the solution of
the BSE. This issue has been carefully discussed in the context of meson-meson scattering
(see Sect. 3.4 of Ref. [11]) and applies equally well in the present context. In summary,
the result of that discussion amounts to write the renormalized amplitudes (finite) in the
same way as the divergent amplitudes but with the previously divergent integrals taken as
finite renormalized constants. Ideally one would like to derive them from the underlying
QCD dynamics, but in practice it proves easier to fit them to experiment. This amounts to
consider, besides the physical masses and weak meson decay constants 12 fitting parameters
that define three diagonal matrices in the coupled channel space which appeared already in
the solution of the BSE given, e.g., in Eq. (29). These matrices are

11Despite of that and because the Dirac structure /P , the amplitude of Eq. (31) not only contains

s−wave, but also a small p−wave.
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J0(s = (m̂ + M̂)2) =








JπN 0 0 0
0 JηN 0 0
0 0 JKΛ 0
0 0 0 JKΣ








∆M̂ =








∆N,1 0 0 0
0 ∆N,2 0 0
0 0 ∆Λ 0
0 0 0 ∆Σ








∆m̂ =








∆π 0 0 0
0 ∆η 0 0
0 0 ∆K,1 0
0 0 0 ∆K,2








(36)

where we have denoted the meson-baryon low energy constants J0(s = (mi + Mj)
2), i =

π, η, K, K and j = N, N, Λ, Σ of Eq. (A8) as Jij. The matrix ∆m̂,M̂ which appears in
Eq. (29) is determined by the matrices ∆m̂ and ∆M̂ above, as it is defined in Eq. (A7). On
the other hand, the ∆K,1 and the ∆K,2 matrix elements of the matrix ∆m̂ and the ∆N,1 and
the ∆N,2 matrix elements of the matrix ∆M̂ have been taken in general to be different. This
is because, though their formal expression as divergent integrals in Eqs. (A5) and (A7) are
the same, after doing the needed renormalization there is no reason why the finite parts in
these two channels should coincide12.

III. NUMERICAL RESULTS

Throughout the paper we will use the following numerical values for masses and weak
decay constants of pseudoescalar mesons (all in MeV),

mπ = 139.57 mη = 547.45 mK = 497.67

MN =
{

Mp = 938.27
Mn = 939.57

MΛ = 1115.68 MΣ = 1192.55

fπ = 93.2 fη = fK = 1.3fπ (37)

where for the channel 11 the proton mass is used, because the data have been obtained from
the π−p scattering, and for the channel 22 we take the neutron mass, because the available
data come from π−p → ηn. In this way we ensure the exact and physical position of the
thresholds. This proves important due to the proximity of the N(1535) to the ηn threshold.

12This point is clearly exemplified in the ππ BSE treatment, see Eq. (A.15) in Ref. [11], where

constants which stem from the same divergent integrals, after renormalization become in fact

different functions of the SU(2) low energy constants l̄’s.
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A. Fitting procedure

We perform a χ2−fit with 12 free parameters considering the following experimental data
and conditions:

• S11 πN elastic phase shifts and inelasticities [22], 1077.84 MeV ≤ √s ≤ 1946.52 MeV:
In this CM energy region, there are a total number of 281 phase shifts and inelasticity
data points . Though we have considered four coupled channels, the three-body ππN
channel is not explicitly considered. This omission influences both the phase shifts
and the inelasticities and we will assume here that the effect is much more important
for the inelasticities than for the phase shifts. Thus, we have fitted the phase-shifts
while inelasticities have been considered only to impose some constraints on the fit.
While η > 0.99, we have considered that the ππN channel is essentially closed. In the
data, this is the case for CM energies below

√
s = 1406.4 MeV. In this energy region,

we have assigned to the phase shifts a 3% relative error added in quadrature with a
systematic 1o absolute error, in the spirit of Ref. [5]. In this way, we are assuming that
any ππN subthreshold effects are effectively incorporated in the systematic error men-
tioned above. At higher energies, inelasticities are smaller than 0.99 and we provide
the phase shifts with a systematic 15o absolute error added in quadrature with a 3%
relative error. The reason for this big systematic error is to account for the explicit
omission of the, now open and likely important, three-body channel.

Despite of being able to account for a part of the inelasticities (ηN , KΛ and KΣ
channels ) and because of the explicit omission of the ππN channel, inelasticities have
not been fitted. Nevertheless, some constraints are imposed in order to prevent the
occurrence of smaller inelasticities than the experimental ones. On a quantitative level
this means the following. Firstly, we provide the inelasticities with a 3% relative error
added in quadrature with 0.01 absolute error. In the second step within the χ2−fit
procedure and given a set of parameters, we compute the theoretical inelasticity for
each

√
s. If it turns out that for one CM energy the inelasticity is smaller than the

experimental value, taking into account the provided errors, we strongly disfavor this
set of parameters by decreasing the total error on the inelasticity for this CM energy
by an order of magnitude when calculating its contribution to the total χ2. Besides,
those energies for which the theoretical inelasticities fall above the experimental ones
are set to contribute zero to the total χ2. In this way, we do not force the fit to pass
through the experimental inelasticities at all, but avoid the unphysical scenario where
∑

i=ηN,KΛ,KΣ σtheoretical
i > σexperimental

inel .

• Total π−p→ ηn cross section [23], 1488.4 MeV ≤ √s ≤ 1563.8 MeV

We fit the region close to the ηn threshold and in terms of the commonly used qLAB

(incoming pion momentum in the laboratory (LAB) system), the above range corre-
sponds to 687 MeV <∼ qLAB

<∼ 812 MeV. There is a total number of 11 data points.
The experimental uncertainties are provided in Ref. [23]. In addition, the experimental
cross section has the contribution not only of the s−wave, object of this work, but
also of the rest of higher partial waves. Next to threshold the s−wave is the domi-
nant contribution and the higher energy cut (1563.8 MeV) determines the region up

12



to where it is still a good approximation to the total cross section. For higher energies
the p−wave does play an important role and cannot be neglected, Ref. [4].

We have neglected any possible effect stemming from the ππN intermediate state in
this inelastic channel, as it has been also assumed previously in Refs. [3] and [9].

• Total π−p→ K0Λ cross section [23], 1617.5 MeV ≤ √s ≤ 1724.8 MeV.

We fit the region close to the K0Λ threshold, 904 MeV <∼ qLAB
<∼ 1097 MeV with the

experimental error bars provided in Ref. [23]. There is a total number of 45 data points
and the remarks concerning both the contribution of the ππN channel and p− wave
effects of the previous item apply also here.

Note that we have not fitted the π−p → K0Σ0 total cross section because of the likely
sizable isospin 3/2 contribution.

13
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FIG. 2. S11−elastic πN phase–shifts and inelasticities as a function of CM energy
√

s. Data from

Ref. [22]. Solid lines stand for the lowest–order BSE results with parameters given in Appendix C. Dot-

ted-dashed vertical lines in the bottom plot indicate the energies for which new channels are opened.
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FIG. 3. Total π−p → ηn and π−p → K0Λ cross sections as a function of the CM energy. Data from

Ref. [23]. Solid lines stand for the lowest–order BSE S11−results with parameters given in Appendix C.

Data for energies above the vertical dotted-dashed lines have not been included in the fit.

B. Results of the best χ2−fit

The best fit parameters are compiled in Appendix C. The errors on the parameters
turn out to be fairly small. They are purely statistical and have been obtained from the
68% confidence level on the best-fit parameter 12-dimensional distributions. We generate
these parameter distributions out of N = 104 samples. Each of the samples is obtained
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from a χ2−fit to a synthetic set of data–points which are obtained from the original one
by a Gaussian sampling procedure, i.e. the total number of fits is N = 104. We use the
so obtained distributions to evaluate the correlation matrix between the parameters. The
correlation matrix is also given in Appendix C. Besides, quantities coming from a χ2−fit,
are Gauss distributed in the limit of small errors, as it seems to be the case here, therefore
the correlation matrix determines the parameter distributions.

Systematic errors on the parameters are not included and they are difficult to estimate.
We can not completely discard that they might be sizeable. This situation reflects the
present status of the art in unitarized calculations.

In Figs. 2 and 3 we show the results of our approach, with parameters given in Ap-
pendix C, for those quantities which have been fitted to. In Fig. 3 only the data for energies
below the vertical dotted-dashed lines have been included in the fit. The overall descrip-
tion is remarkably good and that gives us some confidence on the used non-perturbative
resummation procedure based on the BSE. For the elastic πN → πN scattering length we
get

a
1
2

0 ≡
[

f
1
2

0 (s = (mπ + MN)2)
]

πN←πN
= 0.179± 0.004 fm (38)

where the error is statistical and it has been obtained from those in the best fit parameters
(Eq. (C1)), taking into account the existing statistical correlations, through a Monte–Carlo
simulation. This value should be compared both to the recent experimental one 0.252±0.006
fm of Ref. [24] and to the HBChPT result to third order of Ref. [14] 0.19 ± 0.05 fm. The
agreement between our coupled channel unitarized scattering length with that from NNLO-
HBChPT is satisfactory from a theoretical viewpoint since in both cases the same set of low
energy data [22] have been used. The discrepancy of our number with the experimental one
of Ref. [24] possibly points toward a too conservative error assignment of the low energy
phase-shifts in Ref. [22].

In principle, the LEC’s of Eq. (C1) determine, or viceversa they can be determined from,
the next-to-leading order results of ChPT, as it is explicitly shown in Ref. [11], for the case
of elastic ππ−scattering. However, the perturbative calculation is not available and it only
exists next-to-leading results for πN , with no coupled channels [5,17,25,26], in the framework
of Heavy Baryon Chiral Perturbation Theory (HBChPT). In Appendix D we discuss this
point in more detail.

C. Predictions for other processes

In Fig. 4 we show some of our predictions for phase shifts, inelasticities and s−wave
T = 1/2 partial cross sections for some other channels. For most of them there are no
data. The ηN → ηN elastic phase shifts (top left pannel) present a steep raise close to the
threshold going up to 70o, which corresponds to a typical low energy resonance behaviour
triggered by the N(1535) resonance (see next section) . Accordingly, the corresponding
partial cross section (bottom pannel) takes a unnaturally large value as compared to other
elastic and transition cross sections. This is in contrast to any expectation based in the Born
approximation, since the corresponding potential in this channel vanishes (see Eq.( 8)).
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FIG. 4. Top pannel: s−wave T = 1/2 phase shifts (in degrees) for elastic ηN → ηN (left pannel) and

KΛ→ KΛ (right pannel) processes as functions of the CM energy. Middle pannel: same as before but for

inelasticities. Vertical lines indicate the opening of reaction thresholds. Bottom pannel: s−wave T = 1/2

meson-baryon cross sections (πN → πN, ηN, KΛ, KΣ; ηN → ηN, KΛ, KΣ; KΛ → KΛ, KΣ) in mbarns as

functions of the CM energy. Dashed lines indicate πN initial state. Solid lines indicate ηN initial state.

Crosses indicate KΛ initial state. All the lines start at the relevant final state threshold (with the exception

of the elastic πN → πN reaction).

17



The effect of the N(1535) can also be seen at the figure (bottom pannel) by the maximum
in πN → ηN cross section and the cusp effect in the πN → πN partial cross section. On the
other hand, KΛ→ KΛ phase shifts (top right pannel) turn out to be extremely small. The
effect of the N(1650) can also be seen at the cross sections, particularly in the πN → πN
partial cross section, though the effect is less pronounced than in the N(1535) case. We
have not plotted the elastic KΣ→ KΣ cross section since the physical process involves also
the isospin T = 3/2 channel, not considered in this work.

Our estimates for ηN and KΛ scattering lengths (defined for the elastic channels similarly
as in Eq. (38) are

aηN = 0.772(5) + i 0.217(3) fm

aKΛ = 0.0547(5) + i 0.032(4) fm (39)

respectively. The scattering length aηN compares reasonably well with the one obtained in
Ref. [3], aηN = 0.68 + i0.24 fm.

D. Second Riemann sheet: poles and resonances.

In this section we are interested in describing masses and widths of the S11− resonances.
An illustrative picture of the complex CM energy plane with the singularities from the
Particle Data Book [27] is presented in Fig. 5. For a more distinctive characterization of the
resonances one has to look for poles in the complex s− plane.

Since causality imposes the absence of poles in the physical sheet [28], one should search
for complex poles in unphysical ones. Among all of them, those closest to the physical
sheet are the most relevant ones. For the sake of clarity, we will devote some space here
to explain, in a quantitative manner, the meaning of “close” in this context. We look for
poles in the coupled channel matrix amplitude t(s) defined in Eq. (33). We have only
examined the entry 11, πN → πN , of that matrix. The position of the complex poles, as
long as they are produced for physical resonances, should be independent of the particular
channel. However, residues at the pole do depend on the examined channel, because they
determine the coupling of each of the channels to the resonances. This interesting point will
be discussed elsewhere [29].

To begin with, let us assume a situation where the coupled channel formalism is not
needed, i.e. an artificial situation where only the 11 element of the first column and row of
the D−matrix in Eq. (8) is non-vanishing. In such a case, elastic unitarity requires only a
unique finite branch point at s = s+ = (MN + mπ)2 and a cut along the line [s+, +∞[. The
scattering amplitude in the unphysical second Riemann sheet (tII(s)) is simply obtained by
analytical continuation of the amplitude in the physical first Riemann sheet (t(s) ≡ tI(s))
across the unitarity cut, and therefore the following relation for inverse amplitudes should
hold (s real and above s+)

t−1
II (s + iǫ) = t−1

I (s− iǫ) (40)
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FIG. 5. Location of reaction thresholds and resonances in the complex CM energy plane. The corre-

sponding unitarity cuts have increasing thickness for increasing energy

The unitarity condition for the inverse amplitude, deduced from Eqs. (33),(30) and (A12)
reads,

Disc [t−1(s)] ≡ t−1
I (s + iǫ)− t−1

I (s− iǫ) = 2iρ(s) s > s+ (41)

with s ∈ R, where the phase space function

ρ(s) =
λ1/2(s, mπ, MN)

16πs
× (
√

s + MN)2 −m2
π

2
√

s
(42)

has been introduced, understanding that ρ(s) is a function of the real variable s. Then,
analytically continuing the phase space function to all complex plane, the unitarity condition
reads

t−1
I (s + iǫ)− t−1

I (s− iǫ) = 2iρ(s + iǫ) s+ < s ∈ R (43)

where the cuts for λ
1
2 (z, m2

π, M2
N) go along the real axis for −∞ < s < s− and s+ < s <∞.

The function is chosen to be real and positive on the upper lip of the second cut, s+ < s <∞
and hence it satisfies:

λ
1

2 (s + iǫ, m2
π, M

2
N ) = −λ

1

2 (s− iǫ, m2
π, M

2
N) = |λ 1

2 (s, m2
π, M

2
N)| s+ < s ∈ R (44)

Besides, the cut for the
√

z function, also appearing in ρ(z), is taken along the line ]−∞, 0]
and the multivalued function is taken to be positive for real and positive values of z. Now
using Eqs. (40) and (43) one finds the amplitude in the second Riemann sheet,

t−1
II (z) = t−1

I (z)− 2iρ(z) z ∈ C (45)

On the other hand,
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t−1
II (s− iǫ) = t−1

I (s− iǫ)− 2iρ(s− iǫ) = t−1
I (s + iǫ)− 2iρ(s + iǫ)− 2iρ(s− iǫ)

= t−1
I (s + iǫ) s+ < s ∈ R (46)

which means that there are only two Riemann sheets linked to the unitarity cut. The
analytical structure, concerning the unitarity cut, of the inverse amplitude is determined by
the function

− J̄0(s)× (
s−m2

π + M2
N

2
√

s
+ MN) (47)

as it is deduced from Eqs. (33), (30) and (A8). Because of the choice of cuts for the
multivalued function

√
z above, the function L(s) introduced in Eq. (A9) determines the

analytical structure of t(s). Thus, the two Riemann sheets of t(s) related to the unitarity
cut, are obtained from the values n = 0 and 1 in Eq. (A13) for L(z, n).

In the general case of multiple thresholds, as it is the case in this work, the above
conclusions hold for any of the finite branch points, located at the physical thresholds, and
unitarity related cuts going along the lines [branch point, ∞[.

For four channels, there are a total number of 24 = 16 Riemann sheets related to unitarity.
Now, J̄0(s) and hence L(s) become diagonal matrices in the coupled channel space, namely

L(z,n) =








LmπMN
(z, nπN) 0 0 0
0 LmηMN

(z, nηN ) 0 0
0 0 LmKMΛ

(z, nKΛ) 0
0 0 0 LmKMΣ

(z, nKΣ)








(48)

with z ∈ C, n = (nπN , nηN , nKΛ, nKΣ) and the dependence in the masses of the function L
is explicitly given. The first Riemann sheet (tI(s)) corresponds to the choice n = (0, 0, 0, 0).
As mentioned above, poles can only occur in any of the remaining 15 Riemann sheets. The
closer the position of the pole to the scattering region (upper lip of the first Riemann sheet)
the bigger is the influence on the scattering amplitude. All Riemann sheets can be reached
continuously from the first one by looping around the appropriate branch points. From
this point of view, close means proximity following a continuous path. Thus, for the region
(mπ + MN )2 < s < (mη + MN )2 the poles of the (1, 0, 0, 0)−Riemann sheet located in the
fourth quadrant and with values of Rez belonging to the above interval, are expected to have
the biggest influence on the scattering amplitude, as it is illustrated in Fig. 6. Similarly, for
the region (mη + MN )2 < s < (mK + MΛ)2 the poles of (1, 1, 0, 0)−Riemann sheet located
in the fourth quadrant and with values of Rez belonging to the above interval, are expected
to play a crucial role, and so on...
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FIG. 6. Different paths, in the s−complex plane, showing how to reach the point S, located in the

physical scattering region in the interval
[
(mπ + MN )2, (mη + MN )2

]
, from points P (eventually poles)

located in different Riemann sheets, denoted by the vector n as introduced in Eq. (48), and placed both in

the first and fourth quadrants. The unitarity cuts are also depicted in the figure. The “distance” between

S and P is obtained by the length of the shortest path joining them. This can be achieved after continuous

deformation of the paths depicted in the figure, i.e. any deformations without intersecting the branch points.

Thus, we define the “ Second Riemann Sheet” in the relevant fourth quadrant (tII(s))
as that which is obtained by continuity across each of the four unitarity cuts. It is obtained
using for the diagonal matrix J̄0(s) the following function13

LII(z) =







L(z; 1, 0, 0, 0) if (mπ + MN )2 < Re(z) < (mη + MN)2

L(z; 1, 1, 0, 0) if (mη + MN )2 < Re(z) < (mK + MΛ)2

L(z; 1, 1, 1, 0) if (mK + MΛ)2 < Re(z) < (mK + MΣ)2

L(z; 1, 1, 1, 1) if (mK + MΣ)2 < Re(z)

(49)

13Though, each of the functions L(z;n) are analytical in the complex plane, except for the per-

tinent unitarity cuts, note that LII so defined, is continuous for real values of s, but presents

additional discontinuities out of the real axis.
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FIG. 7. Modulus of the πN → πN element of the scattering amplitude t(s), defined in Eq. (33), in

the s−complex plane. In both plots, vertical lines indicate the position of the poles. Top panel: Fourth

quadrant of the “Second Riemann Sheet”, as defined in Eq. (49), and the physical scattering line. The two

observed poles are identified to be the S11− N(1535) and −N(1650) resonances as it is discussed in the main

text. Bottom panel: Fourth quadrant of the “Second Riemann Sheet” and the first quadrant of the first

(physical) Riemann sheet. Besides the two poles already appearing in the top panel, there is a third one.

Though it is unphysical because it appears in the physical sheet out of the real axis, it does not influence

the scattering line as the plot clearly shows.
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In Fig. 7 we show the absolute value of the t11(s) element of the scattering amplitude
both for the fourth quadrant of the “Second Riemann Sheet” and the first quadrant of the
first (physical) Riemann sheet. The physical scattering takes place in the scattering line in
the plots (upper lip of unitarity cut of the first Riemann sheet). The positions of the two
poles in the “Second Riemann Sheet” are (s = M2

R − iMRΓR):

First Pole : MR = 1496.5± 0.4 ΓR = 83.3± 0.7 (50)

Second Pole : MR = 1684.3± 0.7 ΓR = 194.3± 0.8 (51)

where all units are given in MeV and errors have been transported from those in the best
fit parameters (Eq. (C1)), taking into account the existing statistical correlations, through
a Monte–Carlo simulation. These poles are resonances and can be identified to be the S11−
N(1535) and −N(1650) ones which, according to Ref. [27] (PDG), are located at

N(1535) : MR = 1505± 10 ΓR = 170± 80 (52)

N(1650) : MR = 1660± 20 ΓR = 160± 10 (53)

where again units are in MeV and we quote data from position of the poles which are
slightly different to those deduced from a Breit-Wigner fit. The agreement of our predic-
tions and the PDG ones is satisfactory. Our calculated width for the N(1535) / N(1650)
turns out to be smaller/larger than the experimental one, in great part, because its mass
is slightly smaller/larger than the data and hence the available phase space for the decay
decreases/increases. Besides, the inclusion of the three body channel (ππN) would influence
both the widths and the masses of the resonances.

Residues at the poles depend on the examined channel, because they determine the
coupling of each of the channels to the resonances. Thus, from the results shown in Fig. (7)
one could predict the coupling of the N(1535) and N(1650) resonances to πN . A detailed
study of the couplings of these resonances to all channels, not only πN , is presently under
way.

On the other hand, there is a unphysical pole in the physical (first) Riemann sheet.
It is located at (s = M2 + iMΓ) M ≈ 1582 MeV and Γ ≈ 166 MeV and it violates the
Mandelstam’s hypothesis of maximal analyticity [28]. This unphysical pole appears because
we have truncated the iterated potential to solve the BSE. However, as can be seen in the
plots, the two poles in “Second Riemann Sheet” have a much larger influence on the physical
scattering than the spurious (unphysical) one. Thus, the influence of this unphysical pole
may be disregarded14.

14Due to Schwartz’s Reflection Principle there is also a pole in the fourth quadrant of the first

Riemann sheet (complex conjugated of that given above) which influence is even more negligible

than that of the first quadrant. This is because it is placed at a substantially larger distance of

the upper lip of the unitarity cut. Existence of other complex conjugated poles, both in the first

Riemann sheet or in any of the unphysical sheets, is not precluded, but from Fig. (7) we infer that

their influence in the scattering is not significant.
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IV. CONCLUSIONS

In this paper we have developed a Bethe-Salpeter formalism to study s−wave and T =
1/2 meson-baryon scattering up to almost 2 GeV. We work on a four dimensional two body
channel space and the kernel of the BSE takes into account chiral symmetry constraints as
deduced from the corresponding effective Lagrangian. At lowest order in the chiral expan-
sion for the potential, an analytical explicit solution is found which manifestly complies with
multiple channel unitarity. Among the several issues which can be explored using the present
formalism, we have focused our attention on πN elastic scattering (phase shifts and inelas-
ticities), and the measured inelastic cross sections, being the agreement with experiment
rather good. Besides, some predictions for other cross sections, not yet measured, have been
also given. We have undertaken a careful discussion on the analytical structure and continu-
ation of the scattering matrix amplitude to the complex s−plane, which becomes mandatory
in order to extract the location of the S11 resonances. We have searched for poles in the
“Second Riemann Sheet” and compared both masses and widths to data. The agreement
is also quite satisfactory. Thus, and despite of having neglected the three body production
channel ππN , we provide a rather successful description of the s−wave and T = 1/2 meson
(π, η, K)–baryon (N,Λ, Σ) scattering up to almost 2 GeV in the strangeness zero chan-
nel. Couplings of the N(1535) and N(1650) resonances to the different open meson–baryon
channels can be obtained from our amplitudes and it will be discussed elsewhere.

Nevertheless our calculation has some obvious limitations and hence it might be im-
proved. Besides the inclusion of the ππN channel15, one should consider the inclusion of
higher order terms in the two particle irreducible matrix amplitude (potential) which would
lead to a realistic predictions for higher partial waves in the T = 1/2 channel. Understand-
ing the free parameters of our model and their numerical values presented in Eq. (C1), in
terms of the LEC’s appearing in the higher chiral Lagrangian order pieces, either within the
HBChPT formalism [17] or in the fully covariant framework recently developed in Ref. [30],
would be obviously desirable. As we have shown in Appendix D, such a task would, at
least, require to know the perturbative 1/f 6 order to take into account the likely important
ηN−channel effects, which are effectively incorporated in the BSE scheme presented in this
work.

Given the phenomenological success of the presented framework, it seems natural to
extend it to other non zero strangeness channels, for a recent overview of related aspects see
for instance Ref. [31], or to the study of meson photo-production processes.

15In our point of view, it is a highly non trivial task to find a solution of the BSE including

a three body intermediate state exactly complying to three body unitarity. In some cases, for

instance for elastic πN → πN , meson η production, ...., some insight might be obtained by treating

perturbatively the process, as our results suggest.
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APPENDIX A: BASIC INTEGRALS

We display the explicit expressions for the loop integrals used in this paper. The basic
integrals appearing in the solution of the BSE are:

J( /P ) = i
∫

d4q

(2π)4

1

q2 − m̂2

1

/P − q/− M̂
(A1)

JR
1 ( /P ) = i

∫
d4q

(2π)4

1

q2 − m̂2

1

/P − q/− M̂
q/ = J( /P )( /P − M̂)−∆m̂ (A2)

JL
1 ( /P ) = i

∫
d4q

(2π)4

1

q2 − m̂2
q/

1

/P − q/− M̂
= (/P − M̂)J( /P )−∆m̂ (A3)

J2( /P ) = i
∫ d4q

(2π)4

1

q2 − m̂2
q/

1

/P − q/− M̂
q/ = (/P − M̂)J( /P )( /P − M̂)− ( /P − M̂)∆m̂ (A4)

and the results are obtained from relativistic and translational invariance requirement in
momentum space. Here, ∆m̂ is a quadratically divergent integral

∆m̂ = i
∫

d4q

(2π)4

1

q2 − m̂2
(A5)

which would require renormalization. Besides, the linearly divergent integral J( /P ) can be
evaluated yielding:

J( /P ) = /P

[(

s− m̂2 + M̂2

2s

)

J0(s) +
∆m̂M̂

2s

]

+ M̂J0(s) (A6)

∆m̂M̂ = ∆m̂ −∆M̂ = i
∫

d4q

(2π)4

1

q2 − m̂2
− i

∫
d4q

(2π)4

1

q2 − M̂2
(A7)

where ∆m̂M̂ is quadratically divergent as well and the logarithmically divergent integral
J0(s) needs one subtraction to make it finite. Choosing for definiteness the threshold value
s = (m̂ + M̂)2 we get

J0(s) = i
∫

d4q

(2π)4

1

q2 − m̂2

1

(P − q)2 − M̂2
= J̄0(s) + J0(s = (m̂ + M̂)2) (A8)

with J0(s = (m̂ + M̂)2) a divergent integral and the finite function J̄0(s) is given by16

16J0(s) is a diagonal matrix in the coupled channel space and for simplicity we work from now on

in a given channel.
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J̄0(s) =
1

(4π)2

{[

M2 −m2

s
− M −m

M + m

]

ln
M

m
+ L(s)

}

(A9)

and for real s and above threshold, (m + M)2, we have

L(s) ≡ L(s + iǫ) =
λ1/2(s, m2, M2)

s






log




1 +

√
s−s+

s−s
−

1−
√

s−s+

s−s
−



− iπ






(A10)

where have defined the pseudothreshold and threshold variables as

s− = (m−M)2 s+ = (m + M)2 (A11)

respectively, and the logarithm is taken to be real. Note that L(s+) = 0. For s > s+ the
imaginary part along the unitarity cut may be computed directly from the above Eq. (A10)
or through Cutkosky’s rules,

2i ImJ0(s) = DiscJ0(s) = [J0(s + iǫ)− J0(s− iǫ)]

= i
∫

d4q

(2π)2
(−2πi)2δ+(q2 −m2)δ+((P − q)2 −m2)

= −2i
λ1/2(s, m2, M2)

16πs
Θ(s− s+) (A12)

Up to a 16π2 factor the function L(s) has the same discontinuity as the function J0(s).
Taking into account that we have to evaluate the function J0(s) not only for real s > s+ but
also below threshold17 and in the second Riemann sheet as well, to look for the position of
resonances in the complex s−plane, we give here the analytical continuation of L(z) used in
our calculation. Defining ρ± = |z − s±| and taking the principal arguments, Arg(...), θ± of
|z − s±| to lie in the range 0 ≤ θ+ < 2π and −π ≤ θ− < π respectively we have

L(z, n) =
(ρ+ρ−)1/2

z
ei(θ++θ

−
+2nπ)/2

{

ln |R(z)|+ iArg[R(z)]− 2πi
}

R(z) =
ρ

1/2
+ eiθ+/2 + ρ

1/2
− eiθ

−
/2einπ

ρ
1/2
+ eiθ+/2 − ρ

1/2
− eiθ

−
/2einπ

(A13)

where Arg[R(z)] should be taken in the interval [0, 2π[. For n = 0 one gets the first Riemann
sheet LI(z) = L(z, n = 0), which only has a (unitarity) cut along the real axis s+ ≤ s <
∞. When going across the unitarity cut once we jump into the second Riemann sheet,
corresponding to n = 1, LII(z) = L(z, n = 1). If we loop twice around the threshold branch
point z = s+ we come back to the original Riemann sheet. The second Riemann sheet has
an additional cut along the real axis −∞ < s < s− and the following relation holds

17For instance, when calculating the elastic πN scattering, obviously there are values of s below

heavier thresholds ηN , KΛ, KΣ.
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LII(z) = LI(z) + 2πi
λ

1
2 (z, m2, M2)

z
(A14)

where the cuts for λ
1
2 (z, m2, M2) go along the real axis for −∞ < s < s− and s+ < s <∞.

The function is chosen to be real and positive on the upper lip of the second cut, s+ < s <∞
and corresponds |λ 1

2 (s, m2, M2)| ≡ λ
1
2 (s + iǫ, m2, M2). The −2πi constant appearing in

Eq. (A13) determines the chosen Riemann sheet of the logarithm and ensures that LI(z)
is purely real along the real axis below threshold. Note that since R(z) only vanishes at
infinity we never have a chance to cross the cut of the logarithm and never change log-
Riemann sheets.

APPENDIX B: DERIVATION OF THE SOLUTION OF THE BSE

Here we show how to derive Eq. (28) displayed in the main text. The ansatz of Eq. (26)
reduces the BSE integral equation Eq. (20) into a set of linear equations for the matrix
coefficients a,bR,bL and c

a = a[( /P − M̂)J −∆m̂]
D

f 2
+ bL( /P − M̂)[( /P − M̂)J −∆m̂]

D

f 2

bR = bR[( /P − M̂)J −∆m̂]
D

f 2
+ c( /P − M̂)[( /P − M̂)J −∆m̂]

D

f 2
+

D

f 2

bL = aJ
D

f 2
+ bL[( /P − M̂)J −∆m̂]

D

f 2
+

D

f 2

c = bRJ
D

f 2
+ c[( /P − M̂)J −∆m̂]

D

f 2
(B1)

In the above equation J stands for J( /P ) defined and evaluated in Appendix A. The solution
of this matrix system is tricky although straightforward. The main complication arises
from the non-commuting character of the fermion mass matrix M̂ with the coupled channel
matrices a,bL,bR, c and D. Defining

X = a YR = (/P − M̂)bR YL = bL( /P − M̂)

Z = (/P − M̂)c( /P − M̂) G =
1

f 2

[

( /P − M̂)J −∆m̂

]

(B2)

The set of matrix equations can be written as

X = XGD + YLGD (B3)

YR = YRGD + ZGD +
(/P − M̂)D

f 2
(B4)

YL = X(G +
∆m̂

f 2
)

1

/P − M̂
D( /P − M̂) + YLG

1

/P − M̂
D( /P − M̂) +

D( /P − M̂)

f 2
(B5)

Z = YR(G +
∆m̂

f 2
)

1

/P − M̂
D( /P − M̂) + ZG

1

/P − M̂
D( /P − M̂) (B6)

Summing Eqs. (B3) and (B4), and Eqs. (B5) and (B6), we get after some matrix reshuffling
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( /P − M̂)

f 2
= (X + YR)(D−1 −G)− (YL + Z)G (B7)

−( /P − M̂)

f 2
= (X + YR)(G +

∆m̂

f 2
)− (YL + Z)

[

( /P − M̂)−1D−1( /P − M̂)−G
]

(B8)

Subtracting and summing Eqs. (B7) and (B8) we

(X + YR) = (YL + Z)

[

( /P − M̂)−1D−1( /P − M̂)(D−1 +
∆m̂

f 2
)−1

]

(B9)

2( /P − M̂)

f 2
= (X + YR)(D−1 − 2G− ∆m̂

f 2
) + (YL + Z)

[

( /P − M̂)−1D−1( /P − M̂)− 2G
]

(B10)

respectively. We can then solve for Z + YL from Eqs. (B9) and (B10) yielding

(YL + Z)−1 =
{
[

( /P − M̂)−1D−1( /P − M̂)(D−1 +
∆m̂

f 2
)−1 + 1

]

(−2G)

+ (/P − M̂)−1D−1( /P − M̂)

[

(D−1 +
∆m̂

f 2
)−1(D−1 − ∆m̂

f 2
) + 1

]
} f 2

2( /P − M̂)
(B11)

Using the proportionality relation between X + YR and YL + Z given by Eq. (B9) we
obtain the following expression for the on-shell t( /P ) matrix,

t( /P ) = X + YR + YL + Z = (YL + Z)

[

( /P − M̂)−1D−1( /P − M̂)(D−1 +
∆m̂

f 2
)−1 + 1

]

(B12)

Inverting this equation and using Eq. (B11) we get finally the expression given in Eq. (28).

APPENDIX C: BEST FIT RESULTS

The best fit (χ2/dof = 0.75) parameters are

JπN = 0.1897± 0.0004

JηN = 0.6206± 0.0002

JKΛ = −1.227± 0.003

JKΣ = −0.0143± 0.005

∆N,1/(mπ + MN )2 = 0.776± 0.002

∆N,2/(mη + MN )2 = 1.8375± 0.0004

∆Λ/(mK + MΛ)2 = −2.923± 0.008 (C1)

∆Σ/(mK + MΣ)2 = 1.000± 0.017

∆π/(mπ + MN )2 = −0.0123± 0.0003

∆η/(mη + MN )2 = −0.1560± 0.0002

∆K,1/(mK + MΛ)2 = −0.006324± 0.000003

∆K,2/(mK + MΣ)2 = 0.001128± 0.000003
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The correlation matrix, defined as usual,

rij = 〈xixj〉

xi =
ci − 〈ci〉

√

〈c2
i 〉 − 〈ci〉2

〈f(c1, . . . , cn)〉 =
1

N

N∑

α=1

f(c1,α, . . . , cn,α) (C2)

being ci any of the 12 parameters: J ′s and ∆′s, turns out to be:

















1.00
−0.62 1.00

0.35 0.21 1.00
0.28 −0.28 0.48 1.00
0.67 −0.22 0.57 0.09 1.00
0.63 −0.35 −0.18 −0.15 0.00 1.00
0.32 0.24 0.97 0.42 0.49 −0.10 1.00
0.36 −0.30 0.51 0.99 0.14 −0.09 0.43 1.00
0.50 −0.51 −0.30 −0.08 −0.21 0.91 −0.25 −0.04 1.00
−0.51 0.48 −0.48 −0.62 −0.71 0.30 −0.33 −0.65 0.30 1.00

0.10 −0.37 0.12 0.20 0.56 −0.59 0.01 0.18 −0.55 −0.77 1.00
0.19 −0.03 0.54 0.48 0.67 −0.56 0.42 0.48 −0.69 −0.84 0.72 1.00

















(C3)

The large correlations (0.97 and 0.99) between the pairs JKΛ−∆Λ and JKΣ−∆Σ can be
understood by looking at Eq. (34) and taking into account the smallness of the parameters
∆K,1 and ∆K,2 respectively.

APPENDIX D: THE HEAVY BARYON LIMIT AND HBCHPT

It is in principle of theoretical and phenomenological interest the study of the heavy
baryon limit of the BSE amplitude given in Eq. (34). In the static limit, baryons behave
like fixed sources, and consequently the two particle problem should reduce to a one particle
scattering problem (in our case of meson-baryon scattering it would correspond to a Klein-
Gordon equation with a spin-dependent potential). It has been known that the BSE has some
difficulties in reproducing this heavy-light limit in certain situations (ladder approximation
to one boson exchange [32]). We show below that our amplitude has a correct one particle
limit, due to the fact the s−wave interaction is of the contact type. If, in addition to a heavy
baryon expansion, a chiral expansion in powers of 1/f 2 is carried out, we should recover in
this double expansion some form of the results found in Ref. [25,26,14] within HBChPT for
the elastic πN scattering amplitude. The heavy baryon expansion may be taken by making
the baryon masses M̂ → ∞ but keeping the meson masses, m̂, and the meson momentum,
q, finite. On the other hand, baryon mass splittings must be considered higher order effects,
see e.g. [19], so that we take the mass matrix

M̂ = MB + ∆M̂ (D1)

with MB →∞ the common mass of the baryon octect which is proportional to the identity
matrix. Accordingly, in the πN elastic channel we take

29



√
s = E + ω = MN + ω +

ω2 −m2
π

2MN

+ · · · (D2)

where MN = MB + ∆MN . In this appendix we match our amplitude to the HBChPT third
order results of Ref. [14] based on the previous analysis of Refs. [25,26]. The heavy baryon
expansion can be directly done for explicit variables, such as masses and CM energy

√
s.

The constants JπN , . . . , ∆N,1, . . . , ∆π, . . . , given by our numerical fit in Eq. (C1), also might
have a baryon mass dependence. Such a dependence should lead to some changes in the
heavy baryon expansion which cannot be easily determined. In addition, given the non-
perturbative nature of our solution and the fact that many aspects of the coupled channel
meson-baryon data in the S11–strangeness zero channel are described after unitarization up
to energies as high as

√
s = 2GeV, it seems obvious that the parameters of Eq. (C1) also

incorporate higher order effects in the chiral expansion.

1. Static limit

It is convenient to do the study in terms of the inverse coupled channel matrix ampli-
tude, t−1(s), given by Eq. (34). From the expression of the one-loop integral Eq. (A9) and
Eq. (A10) we get to leading order

MJ̄0(s, m, M)|√
s=
√

M2
N

+ω2−m2
π+ω

=
1

16π2
log

(

M2

m2

)

(m− ω) + K̄m(ω) +O
(

1

M

)

(D3)

The subtraction point for the HBChPT integrals is ω = m, K̄m(m) = 0, and their explicit
expression is

K̄m(ω) =
1

8π2







−
√

ω2 −m2 arccosh
(

− ω
m

)

ω < −m

+
√

m2 − ω2 arccos
(

− ω
m

)

ω2 < m2

+
√

ω2 −m2
[

arccosh
(

ω
m

)

− iπ
]

ω > m

(D4)

Thus, one obtains for the unsubtracted integral

MJ0(s, m, M)|√
s=
√

M2
N

+ω2−m2
π+ω

= KmM(ω) +O
(

1

M

)

= MJ0
mM +

1

16π2
log

M2

m2
(m− ω) + K̄m(ω) +O

(
1

M

)

(D5)

where the HBChPT unsubtracted integrals KmM(ω), fulfilling KmM (m) = MJmM and the
heavy baryon approximation of the subtraction constant defined through Eq. (A8),

J0(s = (m + M)2) = J0
mM

{

1 +O
(

1

M

)}

(D6)

have been introduced. In the static limit we obtain from Eqs. (16) and (34) (f(ω) →
−t(s)/(4π) )
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f(ω)−1 = 8π

[

K̄m̂(ω) +
1

16π2
ln

M̂2

m̂2
(m̂− ω) + M̂J0

m̂,M̂
+

∆0
m̂M̂

4M̂

]

− 4π

ω






∆0

m̂ −
[

2

f 2
D +

1

f 4
D∆0

m̂D

]−1





(D7)

with K̄m̂(ω) = Diag(K̄π(ω), K̄η(ω), K̄K(ω), K̄K(ω)) and the heavy baryon approximation of
the subtraction constants are defined by means of the expansion

∆m̂ = ∆0
m̂

{

1 +O
(

1

M

)}

∆m̂M̂ = ∆0
m̂M̂

{

1 +O
(

1

M

)}

The Eq. (D7) corresponds, as it should, to a one particle scattering problem, fulfilling the
coupled channel unitarity condition

Imf(ω)−1 = −
√

ω2 − m̂2θ(ω − m̂) (D8)

The pole in Eq. (D7) for the inverse amplitude is a static limit reminiscent from the baryonic
Adler zero,

√
s−M̂ = 0, of the lowest order potential. The constant combination appearing

in the inverse amplitude, Eq. (D7), M̂J0
m̂M̂

+ ∆0
m̂M̂

/4M̂ should go to some definite value in
the static limit, M →∞. In case it would diverge, the scattering amplitude would become
trivial. We may try to estimate these constants using the numerical values obtained in the
χ2−fit carried out in this work and given in Eq. (C1). We get

MNJπN +
∆πN

4MN
= −0.47mπ

MNJηN +
∆ηN

4MN
= −1.08mη

MΛJKΛ +
∆KΛ

4MΛ
= +0.67mK

MΣJKΣ +
∆KΣ

4MΣ
= −1.24mK (D9)

in units of the relevant pseudoscalar meson masses. Though the numerical values used for
the subtraction constants contain higher order effects in the heavy baryon expansion, we see
that there is indeed some trend to cancellation, because the J ′s and the ∆′s contributions
have opposite signs in the first three cases, and JKΣ is very small. Moreover, the constants
do not seem to attain unnaturally large values, although it is hard to say which should be
an accurate appropriate value.

2. Chiral and heavy baryon expansion

Expanding Eq. (34) in powers of 1/f 2 we get

t(s) = t2(s) + t4(s) + · · · (D10)
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where

t2(s) =
1

f 2

{√
s− M̂, D

}

(D11)

t4(s) =
1

f 4

(√
s− M̂

)

D
∆m̂√
s− M̂

D
(√

s− M̂
)

(D12)

+
1

f 4

{√
s− M̂, D

}
(

(
√

s + M̂)2 − m̂2

2
√

s
Ĵ0(s)−

∆m̂√
s− M̂

+
∆m̂M̂

2
√

s

)
{√

s− M̂, D
}

In the heavy baryon limit we get for the elastic πN → πN amplitude in the S11 channel

f(ω) = f2(ω) + f4(ω) + · · · (D13)

with

f2(ω) = +
ω

4πf 2
π

− m2
π + ω2

8πf 2
πMN

+
ω(3m2

π + ω2)

16πf 2
πM2

N

+O
(

1

M3
Nf 2

)

(D14)

f4(ω) = − ω2

64πf 2
π

[

16

f 2
π

(

2KπN(ω) +
∆πN

2MN

)

+
9

f 2
K

(

2KKΛ(ω) +
∆KΛ

2MΛ

)

+
1

f 2
K

(

2KKΣ(ω) +
∆KΣ

2MΣ

)]

+
3ω

256πf 2
π

[

16

f 2
π

∆π +
9

f 2
K

∆K,1 +
1

f 2
K

∆K,2

]

+O
(

1

MNf 4

)

(D15)

In the region18 mπ ≤ ω ≤ mK only the KπN(ω) has an imaginary part, to comply with
perturbative elastic unitarity, whereas KKΛ(ω) and KKΣ(ω) are purely real. To write down
this expression we have considered the prescription D/f 2 → f̂−1Df̂−1 given in Eq. (9). At
threshold, ω = mπ, the πN scattering length in this channel reads

aπN =
mπ

4πf 2
π

− m2
π

4πf 2
πMN

+
m3

π

4πf 2
πM2

N

− m2
π

64πf 2
π

{

16

f 2
π

[

2MNJ0
πN +

∆0
πN

2MN

]

+
9

f 2
K
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f 2
π
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f 2
K
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f 2
K
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MNf 4
,

1

f 6
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(D16)

From Eq. (D15) and Eq. (D16) above it is clear that there is no contribution from the ηN
channel to this 1/f 4 order of approximation. This is a direct consequence of the structure of
the coupled channel matrix D given by Eq. (8) since the corresponding πN → ηN transition
matrix element vanishes in the Born approximation. For this reason, the channel ηN starts
contributing at order 1/f 6. This situation is unexpected, because on general grounds we
expect the ηN channel to be more important at low energies than the KΛ and KΣ channels

18Note, that the ηN channel appears at order 1/f6.
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since their thresholds lie at higher energies. Using the numerical values of the coefficients
obtained from the fit of Eq. (C1) to estimate the scattering length, Eq. (D16), we get

aπN = 0.22
︸ ︷︷ ︸

1/f2

+

πN
︷ ︸︸ ︷

0.22−
KΛ
︷ ︸︸ ︷

1.06+

KΣ
︷ ︸︸ ︷

0.18
︸ ︷︷ ︸

1/f4

= −0.43 fm (D17)

which should be compared to the one of Eq. (38) obtained from the full amplitude, 0.179 fm.
Obviously, the different values should be attributed to non negligible higher order effects,
which in particular include ηN contributions, and higher order corrections to the J0 and
∆0 coefficients. This is very reassuring because the full BSE amplitude, Eq. (34), besides
restoring unitarity automatically includes all orders in the chiral expansion.

3. Matching to HBChPT

The S11 partial wave amplitude deduced from the work of Ref. [14] based in HBChPT
to third order [25,26] reads, after straightforward angular integration,

f2(ω) =
ω

4f 2
ππ

+
m4

πg
2
A + ω2m2

π [−6− 48a3 + 4g2
A] + ω4 [−6 + 48(a1 + a2)− 5g2

A]

48f 2
πMNπω2

+
m6

πg
2
A − g2

Aω2m4
π + ω4m2

π [6− 48(a2 − 2a3)− 7g2
A] + ω6 [6− 48a1 + 7g2

A]

48f 2M2
Nπω3

(D18)

f4(ω) = −ω2K̄π(ω)

2πf 4
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1

5760f 4
ππ3
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 (D19)

There is no unique way to match the low energy chiral expansion of the coupled channel BSE
amplitude, Eq. (D15), to the third order HBChPT calculation of Refs. [25,26], Eq. (D19).
The analytical structure is different besides the elastic unitarity cut at ω = mπ which
turns out to coincide. Indeed, while the former presents the inelastic unitarity cuts for the
considered KΛ and KΣ coupled channels, the latter includes perturbatively the left hand
cut at ω = 0. Obviously, any particular choice of the matching point generates a specific set
of low energy constants. After explicitly separating the elastic unitarity correction of both
amplitudes, it seems reasonable to do the matching of the remaining pieces in a polynomial
expansion around the elastic threshold point, ω = mπ, since neither inelastic unitarity
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cuts nor the left cut are expected to be crucial at that point. Instead, we expect both
amplitudes to provide a sensible approximation. Also, direct inspection of Eq. (D15) and
Eq. (D19) reveals that only some additive combinations among renormalization constants
can be established. In particular, in Eq. (D15) there are two independent combinations of
low energy constants. Thus, it proves sufficient to Taylor expand around ω = mπ up to first
order. Using the numerical values for the input parameters, Eq. (37), in Eq. (D15) and the
numerical values for the parameters in Ref. [14] in Eq. (D19) the following identifications
hold, (in units of fm)

0.185 = 0.175 + 22.8∆̄0
π + 2.51∆̄0

N,1 + 17.3∆̄0
K,1 + 1.57∆̄0

Λ + 2.12∆̄0
K,2 + 0.179∆̄0

Σ

− 7.60J0
πN − 3.01J0

KΛ − 0.357J0
KΣ

−0.051 = 0.163 + 20.3∆̄0
π + 5.01∆̄0

N,1 + 15.7∆̄0
K,1 + 3.14∆̄0

Λ + 1.94∆̄0
K,2 + 0.359∆̄0

Σ

− 15.2J0
πN − 6.01J0

KΛ − 0.714J0
KΣ (D20)

where ∆̄0
m̂ = ∆0

m̂/(m + M)2 and ∆̄0
M̂

= ∆0
M̂

/(m + M)2 are dimensionless. As we see, there
is a large degree of redundancy when the matching is performed considering only these low
orders of the expansion. By using the values of Eq. (C1), to estimate the heavy-baryon mass
independent parameters appearing in the right hand side of the two relations established in
Eq. (D20), we obtain −0.43 and −0.618 respectively. The disagreement, with respect to the
left hand side values, is not completely surprising because the numerical values used for the
subtraction constants contain higher order effects in the heavy baryon expansion. Besides,
the nominally small differences (O(1/M)) between ∆̄0’s and J0’s and ∆̄’s and J ’s might lead
to significant numerical changes because the factors multiplying these constants are large in
units of the left hand side values of Eq. (D20).
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