123 research outputs found

    Numerical study of anharmonic vibrational decay in amorphous and paracrystalline silicon

    Get PDF
    The anharmonic decay rates of atomic vibrations in amorphous silicon (a-Si) and paracrystalline silicon (p-Si), containing small crystalline grains embedded in a disordered matrix, are calculated using realistic structural models. The models are 1000-atom four-coordinated networks relaxed to a local minimum of the Stillinger-Weber interatomic potential. The vibrational decay rates are calculated numerically by perturbation theory, taking into account cubic anharmonicity as the perturbation. The vibrational lifetimes for a-Si are found to be on picosecond time scales, in agreement with the previous perturbative and classical molecular dynamics calculations on a 216-atom model. The calculated decay rates for p-Si are similar to those of a-Si. No modes in p-Si reside entirely on the crystalline cluster, decoupled from the amorphous matrix. The localized modes with the largest (up to 59%) weight on the cluster decay primarily to two diffusons. The numerical results are discussed in relation to a recent suggestion by van der Voort et al. [Phys. Rev. B {\bf 62}, 8072 (2000)] that long vibrational relaxation inferred experimentally may be due to possible crystalline nanostructures in some types of a-Si.Comment: 9 two-column pages, 13 figure

    Response to comment on 'Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity'

    Get PDF
    Lambert et al. question our retrospective and holistic epidemiological assessment of the role of chytridiomycosis in amphibian declines. Their alternative assessment is narrow and provides an incomplete evaluation of evidence. Adopting this approach limits understanding of infectious disease impacts and hampers conservation efforts. We reaffirm that our study provides unambiguous evidence that chytridiomycosis has affected at least 501 amphibian species

    Thermal Performance Curves of Multiple Isolates of Batrachochytrium dendrobatidis, a Lethal Pathogen of Amphibians

    Get PDF
    Emerging infectious disease is a key factor in the loss of amphibian diversity. In particular, the disease chytridiomycosis has caused severe declines around the world. The lethal fungal pathogen that causes chytridiomycosis, Batrachochytrium dendrobatidis (Bd), has affected amphibians in many different environments. One primary question for researchers grappling with disease-induced losses of amphibian biodiversity is what abiotic factors drive Bd pathogenicity in different environments. To study environmental influences on Bd pathogenicity, we quantified responses of Bd phenotypic traits (e.g., viability, zoospore densities, growth rates, and carrying capacities) over a range of environmental temperatures to generate thermal performance curves. We selected multiple Bd isolates that belong to a single genetic lineage but that were collected across a latitudinal gradient. For the population viability, we found that the isolates had similar thermal optima at 21°C, but there was considerable variation among the isolates in maximum viability at that temperature. Additionally, we found the densities of infectious zoospores varied among isolates across all temperatures. Our results suggest that temperatures across geographic point of origin (latitude) may explain some of the variation in Bd viability through vertical shifts in maximal performance. However, the same pattern was not evident for other reproductive parameters (zoospore densities, growth rates, fecundity), underscoring the importance of measuring multiple traits to understand variation in pathogen responses to environmental conditions. We suggest that variation among Bd genetic variants due to environmental factors may be an important determinant of disease dynamics for amphibians across a range of diverse environments

    Structure and physical properties of paracrystalline atomistic models of amorphous silicon

    Full text link
    We have examined the structure and physical properties of paracrystalline molecular dynamics models of amorphous silicon. Simulations from these models show qualitative agreement with the results of recent mesoscale fluctuation electron microscopy experiments on amorphous silicon and germanium. Such agreement is not found in simulations from continuous random network models. The paracrystalline models consist of topologically crystalline grains which are strongly strained and a disordered matrix between them. We present extensive structural and topological characterization of the medium range order present in the paracrystalline models and examine their physical properties, such as the vibrational density of states, Raman spectra, and electron density of states. We show by direct simulation that the ratio of the transverse acoustic mode to transverse optical mode intensities ITA /ITO in the vibrational density of states and the Raman spectrum can provide a measure of medium range order. In general, we conclude that the current paracrystalline models are a good qualitative representation of the paracrystalline structures observed in the experiment and thus provide guidelines toward understanding structure and properties of medium-range-ordered structures of amorphous semiconductors as well as other amorphous materials

    The role of open abdomen in non-trauma patient : WSES Consensus Paper

    Get PDF
    The open abdomen (OA) is defined as intentional decision to leave the fascial edges of the abdomen un-approximated after laparotomy (laparostomy). The abdominal contents are potentially exposed and therefore must be protected with a temporary coverage, which is referred to as temporal abdominal closure (TAC). OA use remains widely debated with many specific details deserving detailed assessment and clarification. To date, in patients with intra-abdominal emergencies, the OA has not been formally endorsed for routine utilization; although, utilization is seemingly increasing. Therefore, the World Society of Emergency Surgery (WSES), Abdominal Compartment Society (WSACS) and the Donegal Research Academy united a worldwide group of experts in an international consensus conference to review and thereafter propose the basis for evidence-directed utilization of OA management in non-trauma emergency surgery and critically ill patients. In addition to utilization recommendations, questions with insufficient evidence urgently requiring future study were identified.Peer reviewe

    Use of micro CHP plants to support the local operation of electric heat pumps

    Get PDF
    Fig. 1. Global distribution of chytridiomycosis-associated amphibian species declines. Bar plots indicate the number (N) of declined species, grouped by continental area and classified by decline severity. Brazilian species are plotted separately from all other South American species (South America W); Mesoamerica includes Central America, Mexico, and the Caribbean Islands; and Oceania includes Australia and New Zealand. No declines have been reported in Asia. n, total number of declines by region. [Photo credits (clockwise from top left): Anaxyrus boreas, C. Brown, U.S. Geological Survey; Atelopus varius, B.G.; Salamandra salamandra, D. Descouens, Wikimedia Commons; Telmatobius sanborni, I.D.l.R; Cycloramphus boraceiensis, L.F.T.; Cardioglossa melanogaster, M.H.; and Pseudophryne corroboree, C. Doughty

    The open abdomen in trauma and non-trauma patients: WSES guidelines

    Full text link
    corecore