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The anharmonic decay rates of atomic vibrations in amorphous siliaeli)(and paracrystalline silicon
(p-Si), containing small crystalline grains embedded in a disordered matrix, are calculated using realistic
structural models. The models are 1000-atom four-coordinated networks relaxed to a local minimum of the
Stillinger-Weber interatomic potential. The vibrational decay rates are calculated numerically by perturbation
theory, taking into account cubic anharmonicity as the perturbation. The vibrational lifetimesfare found
to be on picosecond time scales, in agreement with the previous perturbative and classical molecular dynamics
calculations on a 216-atom model. The calculated decay ratgs$oare similar to those cd-Si. No modes
in p-Si reside entirely on the crystalline cluster, decoupled from the amorphous matrix. The localized modes
with the larges{up to 59% weight on the cluster decay primarily to two diffusons. The numerical results are
discussed in relation to a recent suggestion by van der \é&aat. [Phys. Rev. B62, 8072(2000] that long
vibrational relaxation inferred experimentally may be due to possible crystalline nanostructures in some types
of a-Si.
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[. INTRODUCTION These experimental results are at odds with the known
theories of anharmonic vibrational decay in disordered
The pioneering experiments by Dijkhuis and materials~8 In their so called “fracton” model, Alexander
co-workerd~ explored transient dynamics of excited vibra- et al® assumed that the majority of vibrational states in dis-
tional modes in a topologically disordered material—ordered systems are localized. This seemed to explain the
hydrogenated amorphous silicon. In these experiments nombove experimental findings since the anharmonic decay
equilibrium vibrational states were generated duringcould be drastically reduced by the extremely small likeli-
relaxation and recombination of optically excited electronshood of the overlap between three localized mddéSThat
and monitored with a probe laséanti-Stokes Raman spec- the small probability of the overlap between three localized
troscopy for transient behavior. The experimental results aremodes inhibits vibrational decay was disputed by Fabian and
surprising: Scholteret al}? found that at low temperatures Allen® who put forward a probabilistic scaling argument that
(2 K) and for vibrational frequencies greater than 10 meVthe interaction between three localized modes would in fact
(maximum frequency ire-Si is about 70 meY vibrations  be crucial for the anharmonic decay and cannot be neglected.
decay on time scales of tens of nanoseconds. FurthermorBabian later demonstratétthe scaling argument on a one-
the higher the vibrational frequency, the slower is the decaglimensional anharmonic chain with random spring constants,
rate. In contrast, phonons in crystalline silicon decay on timeand similar conclusions were reached recently by Leitner in a
scales of tens of picosecoridsnd the decay rates increase study of heat flow in a one-dimensional gi&sand vibra-
with increasing frequency. The results of Schok¢rl.were  tional energy transfer in helices of myoglobthThus the
further confirmed by van der Vooet al.® who suggested fracton model, even if true in its premise of localization of
that the long lifetimes are due to the microstructure of amorthe majority of the vibrational modes, does not explain the
phous silicon. This suggestion was tested by van der Vooréxperiment. We note, however, that even the premise of the
et al* by measuring the vibrational decay rates of a mixedmodel is questionable, as it is in sharp contrast to what is
amorphous-nanocrystalline silicon, which was an amorphoufound in finite-size realistic models of glasses, which nor-
hydrogenated silicon with a sizable fraction of nanocrystal-mally exhibit localization only in a small part of the spec-
lites (with the diameter of +5 nm). Even the mixed sample trum.
displayed nanosecond vibrational lifetimes, although the life- Numerical calculations of vibrational decay in glasses
times appeared to decrease with increasing frequency. A hyrave been performed both by evaluating a perturbation
pothesis was put forwatdhat the measured types of amor- formulé® and by classical molecular dynamic Perturba-
phous silicon contain nanoscale regions with correldied tion theory was applied to the problem of anharmonic decay
not orderedl atoms, which, through enhanced size quantizain glasses by Fabian and Allermho computed the decay
tion and localization of vibrational frequencies, inhibit anhar-rates for a 216 atom model of amorphous Si. The decay rates
monic decay. were found to be fractions of meVWthat is, lifetimes are
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picoseconds in general increasing with increasing fre- not surprising that such modes have decay rates similar to
guency. The anharmonic lifetimes of localized modes werether localized states.

similar to those of the extended modes, even in the case of a We remark that the names amorphous and paracrystalline
model alloy Sj Ge,_,, where localized modes span more in reference to our models are a matter of terminological
than a half of the spectrum and the overlap between localizegonvenience rather than an attempt in classifying real mate-
states becomes importahBickham and Feldmdrreported ~ fials. We refer ta-Si as describing a homogeneous, continu-
vibrational decay rates for selected modes of 216 and 4098US random network of silicon atoms, whigeSi models are

atom models of amorphous Si, using classical molecular dysuch networks filled with crystalline clusters. Real materials

namics. Their results agree with the perturbative calculation,-Which are normally termed amorphous silicon—are likely
the p-Si type, containing nanoscale crystallites with a dis-

though the computed decay rates are somewhat greater dd i £ sizad®
to the fact that molecular dynamics takes into account all thérI ution of SIz€s. o
In the following we first introduce the structural models

anharmonic interaction, while the perturbative calculation Nt a-Si and 0-Si and their harmonic vibrational properties,

Ref. 6 only cubic anharmonicity. In the calculation of Bick- then discuss the perturbative calculation of anharmonic de-

ham and Feldman, a chosen vibrational mode was given @ay rates and present the results for the 1000-atom models of

grea_lt_er than average kinetic energy and was allowed 9.3 andp-Si. Finally, we discuss our results with respect to
equilibrate while keeping the overall temperature constant,q experiment.

From the decay of the kinetic energy in time, the mode decay

rate was obtained. While the advantage of molecular dynam-

: ; ; ; thrati Il. MODELS

ics over perturbation theory in calculating vibrational decay

rates is that the full anharmonic interaction is considered, the Both models employed in our studies were created with

disadvantage is that the classical dynamics does not captusgmilar techniques: the homogeneous model d68i was
accurately the low temperature decay rdfes example, the  constructed using the WWW methidcand the paracrystal-
rates computed by classical molecular dynamics vanish dine model with a variatiol? of the Barkema-Mousseau
zero temperaturé,while in reality they are finite due to method!® (For a recent review of modeling continuous ran-
quantum effecy. dom networks see Ref. 29The former model was studi&t
The purpose of this paper is threefoldy To extend the for its harmonic properties within the framework of the
previous numerical studies of perturbative anharmonic decatillinger-Weber(SW) potentiaf* prior to the present work.
in homogeneous amorphous silican-$i) to a larger system, The major difference between the methods of WWW and
(i) to present computational details of the numerical evaluBarkema-Mousseau is the starting configuration used for the
ation of anharmonic lifetimes using perturbation theory, andnodel construction: crystalline silicore{Si) is used in the
(iii to calculate vibrational decay rates for a model of amorformer approach and a random close packed configuration in
phous silicon — paracrystalline silicorp{Si) — that in- the latter. Both models were relaxed wnh_rgspect to SW prior
cludes nanocrystallites. The larger system is a 1000-atort? the decay times calculation. The den§|t|es for the two SW
model ofa-Si, prepared similarly to the previously used 216- felaxed models are thus found to be slightiigree to four
atom modef The calculated decay rates display smaller staPercent less than that of the density ofSi, with the density
tistical fluctuations and agree, on average, with those of thef the paracrystalline model being slightlywo percent
smaller model. Studying paracrystalline silicon, a materiainigher than that of the homogeneous model. Changes in the
where small crystalline grains are embedded in a disorderedtomic positions resulting from the SW relaxation were
matrix, allows us to test the hypothesis of van der Vbort found to be quite small. In general it is known that the SW
regarding the structural origin of the anomalous long vibra-Potential produces relaxed structures that have two to three
tional lifetimes in a mixed amorphous-nanocrystalline Si sys{ercent fivefold coordinated atoms, even if the starting struc-
tem. In our calculations we have used a 1000-at8éout of ~ tures were perfectl_y fourfold c_oordir)atféw/hich is the case
which belong to a single crystalline graimodel created by for the paracry.stal]lne modelthis dev_latlon from the_perfgct
Nakhmansonet al!® to simulate medium-range order in fourfold' coordination does not noticeably alter vibrational
amorphous silicon. We should point out, that, although proProperties of the models.
viding a more realistic subject for the verification of van der

Vport’s hypoth.esis _than “regular” models foe-Si, this IIl. HARMONIC VIBRATIONS
simple model is neither an exact structural match to nano- _ o _ _ _
crystalline Si sample of Ref. 4% crystalline fraction and In the harmonic approximation vibrational eigenfrequen-

4.5 nm average grain diameter, verses0% and 1 nmin the ciesw(i) and eigenvectors, are computed by diagonalizing
mode) nor can it account for various other topological de-the corresponding dynamical matrithroughout the paper
fects present in real material. Still, if van der Voort’s suppo-symbolsj, k, andl will represent vibrational modes, while
sition were correct, we would observe inhibited decay rates, b, and ¢ atoms. The results of numerical calculations

of the modes which would be predominantly localized on thefrom various group€~?’indicate that vibrational eigenstates
crystalline cluster in the model. However, we do not find anyin glasses belong to one of four grout®:?° propagons,
modes localized exclusively on the cluster: one of the mostesonant modes, diffusons, and locons. Propagons are sound
cluster-localized modes has only 59% weight on the clustenvaves scattered by structural disorder. Resonances are modes
and is therefore well coupled to the disordered matrix. It istemporarily trapped in topological defects. Diffusons, which
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FIG. 3. Weight of the modes at the crystalline cluster as a func-
ftion of mode frequency in the 1000-atom modelpe®i. Plotted is
the square of the atom displacement summed over the atoms form-
ing the cluster. The horizontal line shows a weight of 0.086%)
indicating an unbiased displacement pattern. The histogram is

. . VDOS for the clustelsee te
make up the majority of the spectrum, and have their fre- ( 2

quencies above the loffe-Regel liffiare extended but non- i
propagating mode®:>*which cannot be labeled by momen- between VDOS of the two models suggests that the crystal
line cluster does not significantly perturb the vibrational

tum, only by frequency. Finally, locons are localized mOdeSstates Experimentally, however, the presence of nanocrystals
in the sense of stron¢Anderson localization. Experimen- - EXp Y ' P Y

L . is detected as a pronounced contributiampeak attributed to
tally the character of the atomic vibrations in glasses ha& ystalline TO modesto the Raman spectrufiWhile this

been studied by inelastic x-ray scattering in various glass%r . . e )
2-36 : : ay indeed suggest that the “crystalline” modes in the ex-
a’s;?reni is re‘\sirésve;eﬁ]errl\’tef.e;g.erlmental and theoretical perimental_ samples are more weakly coupled to the amor-
In Fig. 1 we plot the calculated vibrational density of phous environment, the reason for the appearance of the dis-
states(VDOS) for the models of-Si andp-Si. Both curves tinct peak in the Raman spectrum can also be the fact that
look very similar, which is in agreement with the VDOS high frequen(;y .modes have increased tendency. o reside on
; the cluster(this is also true for our model, see Fig. Ihe

calculation of Ref. 15 made with a modified version of the Raman counling constant of these modes is likelv to be en-
SW potentiaf’ The calculated spectrum agrees rather well ping o . y
hanced, making the modes visible in the Raman spectrum

with the experimental on®,except that the calculation over- ore in the experimental samples which have 24% crvstal-
estimates the highest frequencies by about 15%. This is (én . pe P 0 CIyste
ine fraction, than in the model structure where the fraction is

known artifact of the SW potential. The striking similarity just 10%, without visibly distorting VDOS.

Localization properties of the modes can be judged from
the participation ratigp(j), which indicates how many at-
oms “participate” in vibrational eigenmodgs Inverse par-
ticipation ratio 1p for a-Si andp-Si, as a function of mode
frequency is shown in Fig. 2. The majority of vibrations in
both models is delocalized, with the localization transition
taking place at around 72 me¥the mobility edge The
modes around 30 meV and some modes below 10 meV ap-
pear to be localized too. The latter are resonant modes. The
extended modes below about 15 meV are propagons, while
0.05 all the rest are diffusonéwith possibly some longitudinal

8 L i propagons leff at small frequenci@sThe localization char-
0T T T T T acter in bothe-Si andp-Si models is similar. The presence of
0 10 20 30 40 50 60 70 80 90 the crystalline cluster does not lead to additional localized
PHONON ENERGY. (me Vo), modes elsewhere in the spectrum. Note that the modes with

FIG. 2. Inverse participation ratio fLiof the vibrational states in 121g€ weight on the crystalline factor may have character
the 1000-atom models @tSi (shaded aréaand p-Si (line without  different from dlﬁu§ons(for example, the modes can re-
shading. The modes with the frequencies above 72 nithé ver- ~ Semble propagons in the crystalline regiprs the designa-
tical line) can be considered localized. Quasilocalization occurs ation of the loffe-Regel limit inp-Si should be taken as an
low frequenciesresonant modesand around 30 meV which cor- indication that the overall character of the modes in the
responds to the band edges. The inset is a detailed view of themorphous matrix changes.
low-frequency region. In order to understand what fraction of each mode resides

FIG. 1. Vibrational density of states of the 1000-atom models o
a-Si (shaded areaand p-Si (line without shading Modes withw
>72 meV (indicated by the vertical lineare locons.
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on the crystalline cluster in the-Si model, we compute the ment of the cubic anharmonicity of the interatomic potential
weight each mode has on the clugiiat is, we suniel|? for ~ V in the harmonic representation
eachj over all atomsa from the cluster. The result is shown _
in Fig. 3, together with a histogram of VDOS of the cluster 93V e, e, e

X X . V(i k1) = 2 Z aw )43 cy (2)
calculated by solving the dynamical equations for the cluster (J,k,1) = Mgy e e M.
atoms with the surrounding atoms held fixed. An unbiased By OFaaf"bpTTey VMg My VM

mode has a weight of 0.08@.6%), corresponding to the ' Greek symbolsy, 8, andy stand for the Cartesian coordi-
percentage of the atoms making up the cluster. For all thgaies of both the atomic displacementsrom the equilib-
modes below the mobility edge the weight fluctuates aroundm positions, and of the normalized vibrational eigenvec-
0.086, showing no special affinity for the cluster. Localized; s o The atomic masses are denotednasAnharmonic
modes, as would be expected from their idiosyncratic Char\'/ibrational lifetimes are the inverse of the rates
acter, can be localizedully or partially) on, through, or off
the cluster. None of the modes is localized fully on the clus- 7(j)=1/2(j). 3
ter. There are four locons with the weight on the cluster of
30% or greater, the maximum weight being that of 59% for aln this paper we present decay rates in the units of meV. For
mode with frequencyy=73.05 meV and participation ratio conversion into lifetimes, a decay rate of 1 meV is equivalent
p=13. The second most localized mode on the cluster hat® a lifetime of about 0.7 ps.
the frequency of 72.69 meV, the weight of 55% g 12. In Eq. (1) the term with the temperature factor-h(k)
The third and fourth modes are more delocalized, having+n(l) corresponds to the “combination” decay—k+l1,
frequency (weightp) w=70.67 (31%,160 and w=71.12  while the term withn(k) —n(l) represents the “difference”
(30%,117, respectively. All four modes lie in the mobility decayj+k—1. Energy conservation is ensured by the delta
edge region. In addition to these, there are modes with frefunctions. At low(down to zerd temperatures the first term
quencies around 30 meV which have enhanced affinity foin Eq. (1) dominates, giving rise to a constart 2while both
the cluster(see Fig. 3 The weight of these modes at the terms are generally equally important at large temperatures,
crystalline cluster does not exceed 30%, but six modes hawgherel'~T. In crystalsV(j,k,|) vanishes unless the modes’
the weight between 20 and 30 %. momentum is conserved in the decay process. In glasses,
Harmonic vibrations ire-Si explain well many observed where lattice momentum itself is not a valid concégptcept
thermodynamic properti&of the material, as well as kinet- for propagons and resonangesll the modes k and | from
ics such as heat flot:*! Anharmonicity does not directly the spectrum contribute td(j,k,1) for a givenij.
affect heat flow in dielectric glasses, but is very important in  Crucial for determining decay rates perturbatively from a
relaxing the perturbed vibrations to maintain local equilib-finite-size model is theéfunction regularization. We approxi-
rium (temperature gradient, to be spedifidore directly, mate 5(w)=~ 6,(w), whered, (o) is a rectangle of widttw
anharmonicity affects thermal expansion and sound attenuand height W centered aw=0 . In our calculations with
tion. The 1000-atom model @Si was employed to demon- 1000 atoms we chooser=1 meV, which fits about 40
strate the importance of thermal vibrations in both of thesegnodes in the rectangle. The choicewoheeds to be a com-
phenomend®*° It was found that anharmonicity is rather promise between good statistics and computer power. The
weak ina-Si, although somewhat stronger thanci$i, pri-  statistics is determined by both the number and “similarity”
marily due to strong anharmonicity of resonant modes. Inof the modes in a rectangle. W is too large, the rectangle
deed, resonant modes show giant Bxisen parameters in function will sample modes with distinct characteristics, not
the model, strongly enhancing the effects of anharmonicityrepresenting faithfully the modes of the chosen frequency.
although still within the limits of perturbation theory based This problem is likely to be absent for diffusons, which do

on cubic anharmonicity. not differ much on small spectral scales due to the absence of
degeneracycf. Ref. 39, but may be relevant for propagons
IV. VIBRATIONAL LIFETIMES (which are mixed with resonant modesnd locons(which

are idiosyncratic Fortunately, the averaging, first within the
rectangle and second, over the whole spectrsee Eq.(1)]
makes the decay rates quite insensitive to the choiege fdr

a reasonable interval of values. In the earlier calculétion

Using cubic anharmonicity as the small perturbation to
the harmonic Hamiltonian, anharmonic decay ral 3 of
modej can be obtained from the formdf*

n2 VG kD2 (1 was chosen to be 0.4 meV for a 216-atom model, fitting
2I'(j)= . LK (_[1+ n(k) about four modes in the rectangle. As we will see from the
4o(j) 5 oKo(l) |2 comparison of the two calculations in the following section,

this choice was already good enough, although it may have
contributed somewhat to the statistical noise, especially at
low temperatures and small frequencies. To illustrate the ef-
+[n(k)—n(|)]5[w(j)+(u(k)—w(|)]). (1) fectw has on the decay rates, we show in Fig. 4 the calcu-
lated rates of the mode with=12.49 meV ina-Si, as a
Here w(]j) is the frequency of mod¢, n(j) is the mode function of temperature, for selected, ranging from
occupation number given bw(j)={exdAw(j)/ksT]-1}"  0.12 meV(corresponding to about 4 modes per rectangle
with T denoting temperature, and(j,k,1) is the matrix ele- 2.4 meV(80 modes/rectangleExcept for the smallest, the

tn(]d o)) —w(k)—wo(l)]
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FIG. 4. Calculated decay rate of the moge propagoh with
frequencyw=12.49 meV ina-Si as a function of temperature for FIG. 6. Calculated decay rates versus frequency for the 1000-
different widthsw of the rectangle functiom,,() representing the ~atom model at 10 Kthick line). For comparison the rates of the
delta function in Eq(1). The curves are fow equal 0.12(dashed  216-atom model from Ref. @not smootheyi are also shown
line) and 0.2,0.4....,2.4 meV(solid lineg, the order of which is not (shaded arga
mirrored in the magnitude of the curves. The greatest decay rate is
for w=0.2 meV, while the lowest fov=1.4 meV. The curve rep- 200 modes for which we computed™2 The calculated de-
resentingw=1 meV chosen in the calculation is in the middle of cay rates are presented as a function of the mode frequency
the bunch. for two different temperatures: 10 K in Fig. 6 and 300 K in

Fig. 7. For comparison the previous calculatfbos a 216-

results are grouped together with the dispersion of less thafom model of-Si are included. Overall, the decay rates for
10% above 100 K. The greatest dispersion is at the loweshe (o models agree. The rates are on the order of meV
temperatures, where it reaches 25(khe low temperature  icosecond lifetimes Perturbation theory is thus valid for
properties of the model do not describe well the r@8i 5| the sampled modes with the exception of few in the low-
structure, because of the existence of the minimum fregg; part of the spectrum at 300(Kee below. As was shown
quency of 4 meV in the mod)eIFlg_ure 5 shows the decay i, Ref. 6 the decay rates as a function of frequency at 10 K
rate for the same mode as a functionvgffor sglecteq j[em- (and at low temperatures, generalfgllow the joint density
peratures. The rates_becor_’ne reasonably insensitiver to states{Z o[ w(j)— o(K)— w(1)]} which counts, for a
above 0.4 meV. The dispersion due to the sensitiviynd8  cho5en modg, the number of combination decay possibili-
a factor contributing to the uncertainty of the calculated Val-tieSij'f" with the constraint of energy conservation. At

ues. larger temperatures one must add the number of difference
decay channelg—k—1 to reproduce, qualitatively, the cal-

V. AMORPHOUS SILICON culated I'(w). These up-conversion processes become im-
dgortant for most diffusons at=100 K. More detailed phys-

We now present the calculated decay rates for the 100 ics of the anharmonic decay in glasses and especially the

atom model ofa-Si. Due to the computational power limita-
tions we have sampled the spectrum uniformly with about

1
1
207 T=300 K — 216 :
g T — 1000 i
% 0.6 > i
2] % :
% 0.4 , & :
~ J o0 T=10K (times 20) > !
% 0.3 00100K S 14 ;
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FIG. 7. Calculated decay rates versus frequency for the 1000-
FIG. 5. Calculated decay rate of the mode with frequeacy atom model at 300 K. For comparison the rates of the 216-atom
=12.49 meV ina-Si as a function ofv at 10, 100, and 300 K. model from Ref. 6(not smootheflare also showrishaded area
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FIG. 8. Calculated decay rates of selected modes$i versus PHONON ENERGY (meV)
temperature. The lines are labeled according to modes’ frequencies
in meV. The lowest frequency mode is a propagon, the following
two are diffusongacousticlike and opticlikeand the highest fre-
quency mode is a locon.

FIG. 9. Calculated decay rates of the 1000-atom mode8f

at 10 K. For comparison, the rates for the 1000-atom modeatSif

are also showiishaded argaThe empty circles are for three modes

in the mobility region with more than 30% weight on the crystalline

statistics of the decay matrix elements can be found irfluster, while the inset shows the decay ratBed circles of

Ref. 6. modes around 30 meV, which have large affifityeight up to 30
There are several features which make the calculated dé&® for the cluster.

cay rates for the 216-atom and 1000-atom models somewhatt £ th - f de. Al the oth

different. The first is the overall reduction in noise for the 'St€MNc€ O € minimum-irequency mode. € other

1000-atom modelthe data are not smoothed as was done irpwodes have constant decay rates at small temperatures. The

Ref. 6. The reason is both the greater model digeectral constant goes smoothly to a linear function at large tempera-

averaging and greatew (rectangle averagingNote that the :ﬁres, Vl\’h'ﬁh IS dug to the falc;t thalt thgﬂﬁ)ct)pulatlorl density of

observed noise in the spectrally resolvdd i about 10% or ermal pnonons increases finearly with temperature.

less, consistent with a dispersion of the decay rates wijth

discussed in the previous section. Second, the calculated V1. PARACRYSTALLINE SILICON

rates for the 1000-atom model are somewhat smaller than The results for the 1000-atom model®Si are shown in

those of the 216-atom model, _that is_, the Iatter_model appeaiisigs. 9 and 10, which plot 2 as a function of mode fre-
to be slightly more anharmonic. This is at variance with thequency. For comparison we also present the dataafSi

calculation of thermal expa}nsif?)gn where the 216-atom giscyssed in the previous section. The results are quantita-
model seems less anharmonic. The latter difference probably,ey similar for both models. There are no anomalous decay
can be explained by the anomalously large negative modg;iag appearing in the spectrummsi which would be due

Gruneisen parameters of the low frequency resonance modgs the crystalline cluster. In addition to the sampling modes,
of the 1000 atom model, as the thermodynamic Gruneisen

parameter depends on an average mode Gruneisen parameter 5
at high temperatures. We note that the structural models dif- 2
fer in other ways: the smaller model is more topologically

constrained® has smaller energy/atom, and has higher den-
sity than the 1000-atom model. Third, the calculated rates of
the 1000-atom model extend to a lower frequency region as
the minimum frequency of the model is smaller than that of

the 216-atom model. Finally, some low-frequency modes
(resonancesat 300 K exhibit giant decay rates, comparable

to the modes’ frequencies. These rates are in fact invalid,
since they are not consistent with perturbation theory. How-
ever, they indicate what may be expected from a full anhar-
monic calculation(for example, by molecular dynamics (0 s s S e T T T T T
This important physics issue will be discussed elsewhere. 0 10 20 30 40 50 60 70 80 90

In Fig. 8 we plot the temperature dependence of the decay PHONON ENERGY (meV)
rates of selected modes. We show the temperature depen- FiG. 10. Calculated decay rates of the 1000-atom modptSif

dence for a propagon, an acousticlike and an opticlike diffuzt 300 K. For comparison, the rates for the 1000-atom mode!Sif
son, and a locon. The low-frequency propagon has a divefare also showishaded aréaThe empty circles are for three modes
gent lifetime(decay rate vanishgsis temperature decreases with more than 30% weight on the crystalline cluster, and the inset
to zero, since there are no two modes into which it couldplots the decay ratedilled circles of the modes around 30 meV
decay, due to the energy conservation constraint and the ewith large weight on the cluster.
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FIG. 11. Calculated decay rates for selected locors®i. The FIG. 12. Calculated matrix elemeW(j,k,!) of p-Si for modej
curves are labeled according to frequency in meV. The numbers ift@ximally localized (59% on the crystalline cluster w(j)
the brackets show the modes’ weight on the crystalline cluster. = 73:05 meV\l as a function ofw(k). Shown are data fok and|

obeying energy conservatidw(j) — w(k) — w(l)|<w/2, wherew

we have computed the decay rates specifically for threg 0-2 meV (taken to be smaller tham=1 meV used in the calcu-
modes in the mobility edge region with the weight at the'ation. to get a manageable graphics size
crystalline cluster greater than 30%. They are presented in
Figs. 9 and 10 by empty circles. The decay rates of thesthe whole spectrum, with no anomalous dominating scatter-
modes have the same magnitude as those of the other locoridg probabilities to few selected modes, which would indi-
Finally, in the insets of the two figures we show the decaycate decoupling of the mode from the amorphous matrix.
rates of modes with frequencies around 30 meV, the region
of especially high affinity for the clustdsee Fig. 3. Decay
rates of more than 80 modes in that spectral region are plot-
ted. Although many of the modes have large weiglaime of We have calculated anharmonic decay rates of 1000-atom
them up to 30%on the cluster, most are unbiased. The factmodels ofa-Si andp-Si using perturbation theory with cubic
that 2I" of all of these modes are similar in magnitude atanharmonicity in the interatomic potential. The results for
different temperatures implies no special decay behavior foa-Si are in agreement with the previous perturbative calcula-
the modes of strong affinity for the cluster. tions on a smaller model, as well as with a molecular dynam-

Figure 11 shows the temperature dependence of threes calculation. The results reiterate the previous findings that
modes with more than 30% weight on the crystalline clusterthe vibrational lifetimes are on the picosecond time scales,
The modes have frequenciegveight, p) 70,67 meV generally increasing with increasing frequency. The decay
(319%,160, 72.68 meV(55%,12, and 73.05 me\59%,13. rates of locons are idiosyncratic, but are by no means inhib-
In addition, the figure plots the decay rate of a “normal” ited. Calculated decay rates pfSi are similar to those of
locon withw=77.76 meV(0.02%,8, residing outside of the a-Si, showing little sensitivity to structural properties. These
cluster. The decay rates are constant at the lowest temperfindings disagree with the interpretation of recent experi-
tures, increasing linearly with increasinig at higher tem- ments which find decay rates on the order of nanoseconds
peratures. The mode residing outside the clugtér76 mey  and somewhat greater sensitivity to structural properties.
hasI” of similar magnitude as for the two modes with weight ~ The explanation that we offer to account for these discrep-
of more than 50% on the cluster. ancies is that the calculation and experiment refer to two

Finally, in Fig. 12 we plot the anharmonic matrix ele- different things. First, as we have pointed out earlier, simple
mentsV(j,k,1) of the combination decay—k+I for the (and at such scale usually over-relakedodels such as a
maximally localized mode on the cluster, with frequencycontinuous random network type WWW model or a similar
73.05 meV (weight 59% to visualize the mode’s decay model containing a crystalline grain used in this study cannot
channels. The figure shows that the dominant channel is &ithfully reproduce a broad range of various topological
decay into two diffusons. Decay into a propagon and a diffeatures—some or combinations of which may be respon-
fuson (the points in Fig. 12 below 15 meV and above 58sible for increased decay times observed in the experiment—
meV) is somewhat less important; the corresponding matriypresent in a real material. Second, in our calculations only
elements are much smaller. This may be related to the fadperturbative” decay rates, where a smdiinfinitesima)
that propagon’s weight on the cluster is systematically lowelpopulation of a single mode goes out of equilibrium are com-
than 8.6%(see Fig. 3. The diffusons’ weight on the cluster puted. The experiments measure the decay of vibrational
is much more scattered, with a significant number of diffu-states excited over a large portion of the spectrum. Further-
sons having the weight of 8.6% and more. Decay into anmore, the laser excitation produces phonon populations too
other locon and a propagon is forbidden by energy conseffar off the equilibrium to be called small perturbations. In
vation. Most importantly, the decay channels are spread ovdRef. 3, for example, the excited phonon populatiories

VII. CONCLUSIONS
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between 0.03 and 0.3, which, for a mode with frequency, saynaterial under the specific experimental conditions appear to
50 meV corresponds to an effective temperature of 160 andecay over such long time scales. A better answer may be
400 K, respectively. This is huge compared2 K atwhich  obtained by studying larger and more realistic models when
the samples are held. A numerical investigation of Bickbam the required computational power becomes available. How-
indeed shows that a strong perturbation of the vibrationakyer, considering the consistent results obtained thus far with
spectrum of-Si can relax on a 100 ps time scale, comparedyifferent models(of sizes from 216 to 4096 atomand dif-

to 10 ps for a weak perturbation. In addition to pure vibra-ferent techniqueéperturbation theory and molecular dynam-
tional relaxation, it is also likely, as suggested by Bickhamicg) it is rather unlikely that the interpretation of the experi-
and Feldmari,that correspondingly large local deviations in mental findings in terms of théoure vibrational lifetimes

the atomic displacements cause local structural rearrangethat is, without considering structural relaxation and possi-

ments which may relax to local metastable minima whileply photoexcited-electron recombination processe be
emitting phonons. It is possible that these rearrangementgjidated by investigating larger models.
occur on nanosecond time scales. This effect would decrease

in time as the perturbed structure progresses through deeper
local minima.
We conclude that current simple models &86i in com-
bination with presented above methods of analysis do not We thank Phil Allen for useful discussions and M. van der
provide an answer to the question why vibrations in reaMoort for suggesting this calculation.
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