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The anharmonic decay rates of atomic vibrations in amorphous silicon (a-Si! and paracrystalline silicon
(p-Si!, containing small crystalline grains embedded in a disordered matrix, are calculated using realistic
structural models. The models are 1000-atom four-coordinated networks relaxed to a local minimum of the
Stillinger-Weber interatomic potential. The vibrational decay rates are calculated numerically by perturbation
theory, taking into account cubic anharmonicity as the perturbation. The vibrational lifetimes fora-Si are found
to be on picosecond time scales, in agreement with the previous perturbative and classical molecular dynamics
calculations on a 216-atom model. The calculated decay rates forp-Si are similar to those ofa-Si. No modes
in p-Si reside entirely on the crystalline cluster, decoupled from the amorphous matrix. The localized modes
with the largest~up to 59%! weight on the cluster decay primarily to two diffusons. The numerical results are
discussed in relation to a recent suggestion by van der Voortet al. @Phys. Rev. B62, 8072~2000!# that long
vibrational relaxation inferred experimentally may be due to possible crystalline nanostructures in some types
of a-Si.
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I. INTRODUCTION

The pioneering experiments by Dijkhuis an
co-workers1–4 explored transient dynamics of excited vibr
tional modes in a topologically disordered material
hydrogenated amorphous silicon. In these experiments n
equilibrium vibrational states were generated dur
relaxation and recombination of optically excited electro
and monitored with a probe laser~anti-Stokes Raman spec
troscopy! for transient behavior. The experimental results
surprising: Scholtenet al.1,2 found that at low temperature
~2 K! and for vibrational frequencies greater than 10 m
~maximum frequency ina-Si is about 70 meV! vibrations
decay on time scales of tens of nanoseconds. Furtherm
the higher the vibrational frequency, the slower is the de
rate. In contrast, phonons in crystalline silicon decay on ti
scales of tens of picoseconds5 and the decay rates increa
with increasing frequency. The results of Scholtenet al.were
further confirmed by van der Voortet al.,3 who suggested
that the long lifetimes are due to the microstructure of am
phous silicon. This suggestion was tested by van der Vo
et al.4 by measuring the vibrational decay rates of a mix
amorphous-nanocrystalline silicon, which was an amorph
hydrogenated silicon with a sizable fraction of nanocrys
lites ~with the diameter of 125 nm!. Even the mixed sample
displayed nanosecond vibrational lifetimes, although the l
times appeared to decrease with increasing frequency. A
pothesis was put forward4 that the measured types of amo
phous silicon contain nanoscale regions with correlated~if
not ordered! atoms, which, through enhanced size quanti
tion and localization of vibrational frequencies, inhibit anh
monic decay.
0163-1829/2003/67~22!/224302~8!/$20.00 67 2243
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These experimental results are at odds with the kno
theories of anharmonic vibrational decay in disorder
materials.6–8 In their so called ‘‘fracton’’ model, Alexander
et al.9 assumed that the majority of vibrational states in d
ordered systems are localized. This seemed to explain
above experimental findings since the anharmonic de
could be drastically reduced by the extremely small like
hood of the overlap between three localized modes.10,11That
the small probability of the overlap between three localiz
modes inhibits vibrational decay was disputed by Fabian
Allen6 who put forward a probabilistic scaling argument th
the interaction between three localized modes would in f
be crucial for the anharmonic decay and cannot be neglec
Fabian later demonstrated12 the scaling argument on a one
dimensional anharmonic chain with random spring consta
and similar conclusions were reached recently by Leitner
study of heat flow in a one-dimensional glass13 and vibra-
tional energy transfer in helices of myoglobin.14 Thus the
fracton model, even if true in its premise of localization
the majority of the vibrational modes, does not explain t
experiment. We note, however, that even the premise of
model is questionable, as it is in sharp contrast to wha
found in finite-size realistic models of glasses, which n
mally exhibit localization only in a small part of the spe
trum.

Numerical calculations of vibrational decay in glass
have been performed both by evaluating a perturba
formula6 and by classical molecular dynamics.7,8 Perturba-
tion theory was applied to the problem of anharmonic de
in glasses by Fabian and Allen6 who computed the deca
rates for a 216 atom model of amorphous Si. The decay r
were found to be fractions of meV~that is, lifetimes are
©2003 The American Physical Society02-1
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picoseconds!, in general increasing with increasing fre
quency. The anharmonic lifetimes of localized modes w
similar to those of the extended modes, even in the case
model alloy Six Ge12x , where localized modes span mo
than a half of the spectrum and the overlap between local
states becomes important.6 Bickham and Feldman7 reported
vibrational decay rates for selected modes of 216 and 4
atom models of amorphous Si, using classical molecular
namics. Their results agree with the perturbative calculat
though the computed decay rates are somewhat greate
to the fact that molecular dynamics takes into account all
anharmonic interaction, while the perturbative calculation
Ref. 6 only cubic anharmonicity. In the calculation of Bic
ham and Feldman, a chosen vibrational mode was give
greater than average kinetic energy and was allowed
equilibrate while keeping the overall temperature consta
From the decay of the kinetic energy in time, the mode de
rate was obtained. While the advantage of molecular dyn
ics over perturbation theory in calculating vibrational dec
rates is that the full anharmonic interaction is considered,
disadvantage is that the classical dynamics does not cap
accurately the low temperature decay rates~for example, the
rates computed by classical molecular dynamics vanis
zero temperature,7 while in reality they are finite due to
quantum effects6!.

The purpose of this paper is threefold:~i! To extend the
previous numerical studies of perturbative anharmonic de
in homogeneous amorphous silicon (a-Si! to a larger system
~ii ! to present computational details of the numerical eva
ation of anharmonic lifetimes using perturbation theory, a
~iii !to calculate vibrational decay rates for a model of am
phous silicon — paracrystalline silicon (p-Si! — that in-
cludes nanocrystallites. The larger system is a 1000-a
model ofa-Si, prepared similarly to the previously used 21
atom model.6 The calculated decay rates display smaller s
tistical fluctuations and agree, on average, with those of
smaller model. Studying paracrystalline silicon, a mate
where small crystalline grains are embedded in a disorde
matrix, allows us to test the hypothesis of van der Voo4

regarding the structural origin of the anomalous long vib
tional lifetimes in a mixed amorphous-nanocrystalline Si s
tem. In our calculations we have used a 1000-atom~86 out of
which belong to a single crystalline grain! model created by
Nakhmansonet al.15 to simulate medium-range order i
amorphous silicon. We should point out, that, although p
viding a more realistic subject for the verification of van d
Voort’s hypothesis than ‘‘regular’’ models fora-Si, this
simple model is neither an exact structural match to na
crystalline Si sample of Ref. 4~24% crystalline fraction and
4.5 nm average grain diameter, versus'10% and 1 nm in the
model! nor can it account for various other topological d
fects present in real material. Still, if van der Voort’s supp
sition were correct, we would observe inhibited decay ra
of the modes which would be predominantly localized on
crystalline cluster in the model. However, we do not find a
modes localized exclusively on the cluster: one of the m
cluster-localized modes has only 59% weight on the clus
and is therefore well coupled to the disordered matrix. I
22430
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not surprising that such modes have decay rates simila
other localized states.

We remark that the names amorphous and paracrysta
in reference to our models are a matter of terminologi
convenience rather than an attempt in classifying real m
rials. We refer toa-Si as describing a homogeneous, contin
ous random network of silicon atoms, whilep-Si models are
such networks filled with crystalline clusters. Real materi
—which are normally termed amorphous silicon—are like
of thep-Si type, containing nanoscale crystallites with a d
tribution of sizes.16

In the following we first introduce the structural mode
of a-Si and p-Si and their harmonic vibrational propertie
then discuss the perturbative calculation of anharmonic
cay rates and present the results for the 1000-atom mode
a-Si andp-Si. Finally, we discuss our results with respect
the experiment.

II. MODELS

Both models employed in our studies were created w
similar techniques: the homogeneous model fora-Si was
constructed using the WWW method17 and the paracrystal
line model with a variation15 of the Barkema-Moussea
method.18 ~For a recent review of modeling continuous ra
dom networks see Ref. 19.! The former model was studied20

for its harmonic properties within the framework of th
Stillinger-Weber~SW! potential21 prior to the present work.
The major difference between the methods of WWW a
Barkema-Mousseau is the starting configuration used for
model construction: crystalline silicon (c-Si! is used in the
former approach and a random close packed configuratio
the latter. Both models were relaxed with respect to SW p
to the decay times calculation. The densities for the two S
relaxed models are thus found to be slightly~three to four
percent! less than that of the density ofc-Si, with the density
of the paracrystalline model being slightly~two percent!
higher than that of the homogeneous model. Changes in
atomic positions resulting from the SW relaxation we
found to be quite small. In general it is known that the S
potential produces relaxed structures that have two to th
percent fivefold coordinated atoms, even if the starting str
tures were perfectly fourfold coordinated~which is the case
for the paracrystalline model!; this deviation from the perfec
fourfold coordination does not noticeably alter vibration
properties of the models.

III. HARMONIC VIBRATIONS

In the harmonic approximation vibrational eigenfreque
ciesv( i ) and eigenvectorsea

i are computed by diagonalizin
the corresponding dynamical matrix~throughout the pape
symbols j , k, and l will represent vibrational modes, while
a, b, and c atoms!. The results of numerical calculation
from various groups22–27 indicate that vibrational eigenstate
in glasses belong to one of four groups:6,28,29 propagons,
resonant modes, diffusons, and locons. Propagons are s
waves scattered by structural disorder. Resonances are m
temporarily trapped in topological defects. Diffusons, whi
2-2
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NUMERICAL STUDY OF ANHARMONIC VIBRATIONAL . . . PHYSICAL REVIEW B 67, 224302 ~2003!
make up the majority of the spectrum, and have their f
quencies above the Ioffe-Regel limit30 are extended but non
propagating modes,20,31 which cannot be labeled by momen
tum, only by frequency. Finally, locons are localized mod
in the sense of strong~Anderson! localization. Experimen-
tally the character of the atomic vibrations in glasses
been studied by inelastic x-ray scattering in various gla
systems.32–36 The recent experimental and theoretic
progress is reviewed in Ref. 29.

In Fig. 1 we plot the calculated vibrational density
states~VDOS! for the models ofa-Si andp-Si. Both curves
look very similar, which is in agreement with the VDO
calculation of Ref. 15 made with a modified version of t
SW potential.37 The calculated spectrum agrees rather w
with the experimental one,20 except that the calculation ove
estimates the highest frequencies by about 15%. This
known artifact of the SW potential. The striking similarit

FIG. 2. Inverse participation ratio 1/p of the vibrational states in
the 1000-atom models ofa-Si ~shaded area! andp-Si ~line without
shading!. The modes with the frequencies above 72 meV~the ver-
tical line! can be considered localized. Quasilocalization occur
low frequencies~resonant modes! and around 30 meV which cor
responds to the band edges. The inset is a detailed view of
low-frequency region.

FIG. 1. Vibrational density of states of the 1000-atom models
a-Si ~shaded area! andp-Si ~line without shading!. Modes withv
.72 meV ~indicated by the vertical line! are locons.
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between VDOS of the two models suggests that the crys
line cluster does not significantly perturb the vibration
states. Experimentally, however, the presence of nanocry
is detected as a pronounced contribution~a peak attributed to
crystalline TO modes! to the Raman spectrum.4 While this
may indeed suggest that the ‘‘crystalline’’ modes in the e
perimental samples are more weakly coupled to the am
phous environment, the reason for the appearance of the
tinct peak in the Raman spectrum can also be the fact
high frequency modes have increased tendency to resid
the cluster~this is also true for our model, see Fig. 3!. The
Raman coupling constant of these modes is likely to be
hanced, making the modes visible in the Raman spect
~more in the experimental samples which have 24% crys
line fraction, than in the model structure where the fraction
just 10%!, without visibly distorting VDOS.

Localization properties of the modes can be judged fr
the participation ratiop( j ), which indicates how many at
oms ‘‘participate’’ in vibrational eigenmodesj. Inverse par-
ticipation ratio 1/p for a-Si andp-Si, as a function of mode
frequency is shown in Fig. 2. The majority of vibrations
both models is delocalized, with the localization transiti
taking place at around 72 meV~the mobility edge!. The
modes around 30 meV and some modes below 10 meV
pear to be localized too. The latter are resonant modes.
extended modes below about 15 meV are propagons, w
all the rest are diffusons~with possibly some longitudina
propagons left30 at small frequencies!. The localization char-
acter in botha-Si andp-Si models is similar. The presence o
the crystalline cluster does not lead to additional localiz
modes elsewhere in the spectrum. Note that the modes
large weight on the crystalline factor may have charac
different from diffusons~for example, the modes can re
semble propagons in the crystalline regions!, so the designa-
tion of the Ioffe-Regel limit inp-Si should be taken as a
indication that the overall character of the modes in
amorphous matrix changes.

In order to understand what fraction of each mode resi

t

he

f

FIG. 3. Weight of the modes at the crystalline cluster as a fu
tion of mode frequency in the 1000-atom model ofp-Si. Plotted is
the square of the atom displacement summed over the atoms f
ing the cluster. The horizontal line shows a weight of 0.086~8.6%!
indicating an unbiased displacement pattern. The histogram
VDOS for the cluster~see text!.
2-3
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FABIAN, FELDMAN, HELLBERG, AND NAKHMANSON PHYSICAL REVIEW B 67, 224302 ~2003!
on the crystalline cluster in thep-Si model, we compute the
weight each mode has on the cluster~that is, we sumuea

j u2 for
eachj over all atomsa from the cluster!. The result is shown
in Fig. 3, together with a histogram of VDOS of the clust
calculated by solving the dynamical equations for the clus
atoms with the surrounding atoms held fixed. An unbias
mode has a weight of 0.086~8.6%!, corresponding to the
percentage of the atoms making up the cluster. For all
modes below the mobility edge the weight fluctuates aro
0.086, showing no special affinity for the cluster. Localiz
modes, as would be expected from their idiosyncratic ch
acter, can be localized~fully or partially! on, through, or off
the cluster. None of the modes is localized fully on the cl
ter. There are four locons with the weight on the cluster
30% or greater, the maximum weight being that of 59% fo
mode with frequencyv573.05 meV and participation ratio
p513. The second most localized mode on the cluster
the frequency of 72.69 meV, the weight of 55% andp512.
The third and fourth modes are more delocalized, hav
frequency ~weight,p) v570.67 ~31%,160! and v571.12
~30%,117!, respectively. All four modes lie in the mobility
edge region. In addition to these, there are modes with
quencies around 30 meV which have enhanced affinity
the cluster~see Fig. 3!. The weight of these modes at th
crystalline cluster does not exceed 30%, but six modes h
the weight between 20 and 30 %.

Harmonic vibrations ina-Si explain well many observed
thermodynamic properties38 of the material, as well as kinet
ics such as heat flow.20,31 Anharmonicity does not directly
affect heat flow in dielectric glasses, but is very important
relaxing the perturbed vibrations to maintain local equil
rium ~temperature gradient, to be specific!. More directly,
anharmonicity affects thermal expansion and sound atte
tion. The 1000-atom model ofa-Si was employed to demon
strate the importance of thermal vibrations in both of the
phenomena.39,40 It was found that anharmonicity is rathe
weak ina-Si, although somewhat stronger than inc-Si, pri-
marily due to strong anharmonicity of resonant modes.
deed, resonant modes show giant Gru¨neisen parameters i
the model, strongly enhancing the effects of anharmonic
although still within the limits of perturbation theory base
on cubic anharmonicity.

IV. VIBRATIONAL LIFETIMES

Using cubic anharmonicity as the small perturbation
the harmonic Hamiltonian, anharmonic decay rate 2G( j ) of
modej can be obtained from the formula41,42

2G~ j !5
\2p

4v~ j ! (
kl

uV~ j ,k,l !u2

v~k!v~ l ! S 1

2
@11n~k!

1n~ l !#d@v~ j !2v~k!2v~ l !#

1@n~k!2n~ l !#d@v~ j !1v~k!2v~ l !# D . ~1!

Here v( j ) is the frequency of modej , n( j ) is the mode
occupation number given byn( j )5$exp@\v(j)/kBT#21%21

with T denoting temperature, andV( j ,k,l ) is the matrix ele-
22430
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ment of the cubic anharmonicity of the interatomic potent
V in the harmonic representation

V~ j ,k,l !5(
abc

(
abg

]3V

]uaa]ubb]ucg

eaa
j

Ama

ebb
k

Amb

ecg
l

Amc

. ~2!

Greek symbolsa, b, andg stand for the Cartesian coord
nates of both the atomic displacementsu from the equilib-
rium positions, and of the normalized vibrational eigenve
tors e. The atomic masses are denoted asm. Anharmonic
vibrational lifetimes are the inverse of the rates

t~ j !51/2G~ j !. ~3!

In this paper we present decay rates in the units of meV.
conversion into lifetimes, a decay rate of 1 meV is equival
to a lifetime of about 0.7 ps.

In Eq. ~1! the term with the temperature factor 11n(k)
1n( l ) corresponds to the ‘‘combination’’ decayj→k1 l ,
while the term withn(k)2n( l ) represents the ‘‘difference’
decayj 1k→ l . Energy conservation is ensured by the de
functions. At low~down to zero! temperatures the first term
in Eq. ~1! dominates, giving rise to a constant 2G, while both
terms are generally equally important at large temperatu
whereG;T. In crystalsV( j ,k,l ) vanishes unless the mode
momentum is conserved in the decay process. In glas
where lattice momentum itself is not a valid concept~except
for propagons and resonances!, all the modes k and l from
the spectrum contribute toV( j ,k,l ) for a givenj.

Crucial for determining decay rates perturbatively from
finite-size model is thedfunction regularization. We approxi
mated(v)'uw(v), whereuw(v) is a rectangle of widthw
and height 1/w centered atv50 . In our calculations with
1000 atoms we choosew51 meV, which fits about 40
modes in the rectangle. The choice ofw needs to be a com
promise between good statistics and computer power.
statistics is determined by both the number and ‘‘similarit
of the modes in a rectangle. Ifw is too large, the rectangle
function will sample modes with distinct characteristics, n
representing faithfully the modes of the chosen frequen
This problem is likely to be absent for diffusons, which d
not differ much on small spectral scales due to the absenc
degeneracy~cf. Ref. 39!, but may be relevant for propagon
~which are mixed with resonant modes! and locons~which
are idiosyncratic!. Fortunately, the averaging, first within th
rectangle and second, over the whole spectrum@see Eq.~1!#
makes the decay rates quite insensitive to the choice ofw, for
a reasonable interval of values. In the earlier calculation6 w
was chosen to be 0.4 meV for a 216-atom model, fitt
about four modes in the rectangle. As we will see from t
comparison of the two calculations in the following sectio
this choice was already good enough, although it may h
contributed somewhat to the statistical noise, especially
low temperatures and small frequencies. To illustrate the
fect w has on the decay rates, we show in Fig. 4 the cal
lated rates of the mode withv512.49 meV ina-Si, as a
function of temperature, for selectedw, ranging from
0.12 meV~corresponding to about 4 modes per rectangle! to
2.4 meV~80 modes/rectangle!. Except for the smallestw, the
2-4
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results are grouped together with the dispersion of less
10% above 100 K. The greatest dispersion is at the low
temperatures, where it reaches 25%.~The low temperature
properties of the model do not describe well the reala-Si
structure, because of the existence of the minimum
quency of 4 meV in the model!. Figure 5 shows the deca
rate for the same mode as a function ofw, for selected tem-
peratures. The rates become reasonably insensitive tw
above 0.4 meV. The dispersion due to the sensitivity onw is
a factor contributing to the uncertainty of the calculated v
ues.

V. AMORPHOUS SILICON

We now present the calculated decay rates for the 10
atom model ofa-Si. Due to the computational power limita
tions we have sampled the spectrum uniformly with ab

FIG. 4. Calculated decay rate of the mode~a propagon! with
frequencyv512.49 meV ina-Si as a function of temperature fo
different widthsw of the rectangle functionuw(v) representing the
delta function in Eq.~1!. The curves are forw equal 0.12~dashed
line! and 0.2,0.4, . . .,2.4 meV~solid lines!, the order of which is not
mirrored in the magnitude of the curves. The greatest decay ra
for w50.2 meV, while the lowest forw51.4 meV. The curve rep-
resentingw51 meV chosen in the calculation is in the middle
the bunch.

FIG. 5. Calculated decay rate of the mode with frequencyv
512.49 meV ina-Si as a function ofw at 10, 100, and 300 K.
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200 modes for which we computed 2G. The calculated de-
cay rates are presented as a function of the mode frequ
for two different temperatures: 10 K in Fig. 6 and 300 K
Fig. 7. For comparison the previous calculations6 on a 216-
atom model ofa-Si are included. Overall, the decay rates f
the two models agree. The rates are on the order of m
~picosecond lifetimes!. Perturbation theory is thus valid fo
all the sampled modes with the exception of few in the lo
est part of the spectrum at 300 K~see below!. As was shown
in Ref. 6 the decay rates as a function of frequency at 10
~and at low temperatures, generally! follow the joint density
of states$(kld@v( j )2v(k)2v( l )#% which counts, for a
chosen modej, the number of combination decay possibi
ties j→k1 l with the constraint of energy conservation. A
larger temperatures one must add the number of differe
decay channelsj→k2 l to reproduce, qualitatively, the ca
culated 2G(v). These up-conversion processes become
portant for most diffusons atT*100 K. More detailed phys-
ics of the anharmonic decay in glasses and especially

is

FIG. 6. Calculated decay rates versus frequency for the 10
atom model at 10 K~thick line!. For comparison the rates of th
216-atom model from Ref. 6~not smoothed! are also shown
~shaded area!.

FIG. 7. Calculated decay rates versus frequency for the 10
atom model at 300 K. For comparison the rates of the 216-a
model from Ref. 6~not smoothed! are also shown~shaded area!.
2-5
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FABIAN, FELDMAN, HELLBERG, AND NAKHMANSON PHYSICAL REVIEW B 67, 224302 ~2003!
statistics of the decay matrix elements can be found
Ref. 6.

There are several features which make the calculated
cay rates for the 216-atom and 1000-atom models somew
different. The first is the overall reduction in noise for th
1000-atom model~the data are not smoothed as was done
Ref. 6!. The reason is both the greater model size~spectral
averaging! and greaterw ~rectangle averaging!. Note that the
observed noise in the spectrally resolved 2G is about 10% or
less, consistent with a dispersion of the decay rates withw,
discussed in the previous section. Second, the calcul
rates for the 1000-atom model are somewhat smaller t
those of the 216-atom model, that is, the latter model app
to be slightly more anharmonic. This is at variance with t
calculation of thermal expansion39 where the 216-atom
model seems less anharmonic. The latter difference prob
can be explained by the anomalously large negative m
Grüneisen parameters of the low frequency resonance m
of the 1000 atom model, as the thermodynamic Grunei
parameter depends on an average mode Gruneisen para
at high temperatures. We note that the structural models
fer in other ways: the smaller model is more topologica
constrained,39 has smaller energy/atom, and has higher d
sity than the 1000-atom model. Third, the calculated rate
the 1000-atom model extend to a lower frequency region
the minimum frequency of the model is smaller than that
the 216-atom model. Finally, some low-frequency mod
~resonances! at 300 K exhibit giant decay rates, comparab
to the modes’ frequencies. These rates are in fact inva
since they are not consistent with perturbation theory. Ho
ever, they indicate what may be expected from a full anh
monic calculation~for example, by molecular dynamics!.
This important physics issue will be discussed elsewhere

In Fig. 8 we plot the temperature dependence of the de
rates of selected modes. We show the temperature de
dence for a propagon, an acousticlike and an opticlike di
son, and a locon. The low-frequency propagon has a di
gent lifetime~decay rate vanishes! as temperature decreas
to zero, since there are no two modes into which it co
decay, due to the energy conservation constraint and the

FIG. 8. Calculated decay rates of selected modes ina-Si versus
temperature. The lines are labeled according to modes’ frequen
in meV. The lowest frequency mode is a propagon, the follow
two are diffusons~acousticlike and opticlike! and the highest fre-
quency mode is a locon.
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istence of the minimum-frequency mode. All the oth
modes have constant decay rates at small temperatures
constant goes smoothly to a linear function at large temp
tures, which is due to the fact that the population density
thermal phonons increases linearly with temperature.

VI. PARACRYSTALLINE SILICON

The results for the 1000-atom model ofp-Si are shown in
Figs. 9 and 10, which plot 2G as a function of mode fre-
quency. For comparison we also present the data fora-Si
discussed in the previous section. The results are quan
tively similar for both models. There are no anomalous de
rates appearing in the spectrum ofp-Si which would be due
to the crystalline cluster. In addition to the sampling mod

ies
g

FIG. 9. Calculated decay rates of the 1000-atom model ofp-Si
at 10 K. For comparison, the rates for the 1000-atom model ofa-Si
are also shown~shaded area!. The empty circles are for three mode
in the mobility region with more than 30% weight on the crystalli
cluster, while the inset shows the decay rates~filled circles! of
modes around 30 meV, which have large affinity~weight up to 30
%! for the cluster.

FIG. 10. Calculated decay rates of the 1000-atom model ofp-Si
at 300 K. For comparison, the rates for the 1000-atom model ofa-Si
are also shown~shaded area!. The empty circles are for three mode
with more than 30% weight on the crystalline cluster, and the in
plots the decay rates~filled circles! of the modes around 30 meV
with large weight on the cluster.
2-6
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we have computed the decay rates specifically for th
modes in the mobility edge region with the weight at t
crystalline cluster greater than 30%. They are presente
Figs. 9 and 10 by empty circles. The decay rates of th
modes have the same magnitude as those of the other lo
Finally, in the insets of the two figures we show the dec
rates of modes with frequencies around 30 meV, the reg
of especially high affinity for the cluster~see Fig. 3!. Decay
rates of more than 80 modes in that spectral region are p
ted. Although many of the modes have large weight~some of
them up to 30%! on the cluster, most are unbiased. The f
that 2G of all of these modes are similar in magnitude
different temperatures implies no special decay behavior
the modes of strong affinity for the cluster.

Figure 11 shows the temperature dependence of t
modes with more than 30% weight on the crystalline clus
The modes have frequencies~weight, p! 70,67 meV
~31%,160!, 72.68 meV~55%,12!, and 73.05 meV~59%,13!.
In addition, the figure plots the decay rate of a ‘‘norma
locon withv577.76 meV~0.02%,8!, residing outside of the
cluster. The decay rates are constant at the lowest temp
tures, increasing linearly with increasingT at higher tem-
peratures. The mode residing outside the cluster~77.76 meV!
hasG of similar magnitude as for the two modes with weig
of more than 50% on the cluster.

Finally, in Fig. 12 we plot the anharmonic matrix el
mentsV( j ,k,l ) of the combination decayj→k1 l for the
maximally localized mode on the cluster, with frequen
73.05 meV ~weight 59%! to visualize the mode’s deca
channels. The figure shows that the dominant channel
decay into two diffusons. Decay into a propagon and a
fuson ~the points in Fig. 12 below 15 meV and above
meV! is somewhat less important; the corresponding ma
elements are much smaller. This may be related to the
that propagon’s weight on the cluster is systematically low
than 8.6%~see Fig. 3!. The diffusons’ weight on the cluste
is much more scattered, with a significant number of dif
sons having the weight of 8.6% and more. Decay into
other locon and a propagon is forbidden by energy con
vation. Most importantly, the decay channels are spread o

FIG. 11. Calculated decay rates for selected locons inp-Si. The
curves are labeled according to frequency in meV. The numbe
the brackets show the modes’ weight on the crystalline cluster.
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the whole spectrum, with no anomalous dominating scat
ing probabilities to few selected modes, which would ind
cate decoupling of the mode from the amorphous matrix

VII. CONCLUSIONS

We have calculated anharmonic decay rates of 1000-a
models ofa-Si andp-Si using perturbation theory with cubi
anharmonicity in the interatomic potential. The results
a-Si are in agreement with the previous perturbative calcu
tions on a smaller model, as well as with a molecular dyna
ics calculation. The results reiterate the previous findings
the vibrational lifetimes are on the picosecond time sca
generally increasing with increasing frequency. The de
rates of locons are idiosyncratic, but are by no means inh
ited. Calculated decay rates ofp-Si are similar to those of
a-Si, showing little sensitivity to structural properties. The
findings disagree with the interpretation of recent expe
ments which find decay rates on the order of nanoseco
and somewhat greater sensitivity to structural properties.

The explanation that we offer to account for these discr
ancies is that the calculation and experiment refer to t
different things. First, as we have pointed out earlier, sim
~and at such scale usually over-relaxed! models such as a
continuous random network type WWW model or a simi
model containing a crystalline grain used in this study can
faithfully reproduce a broad range of various topologic
features—some or combinations of which may be resp
sible for increased decay times observed in the experime
present in a real material. Second, in our calculations o
‘‘perturbative’’ decay rates, where a small~infinitesimal!
population of a single mode goes out of equilibrium are co
puted. The experiments measure the decay of vibratio
states excited over a large portion of the spectrum. Furt
more, the laser excitation produces phonon populations
far off the equilibrium to be called small perturbations.
Ref. 3, for example, the excited phonon populationn lies

in

FIG. 12. Calculated matrix elementV( j ,k,l ) of p-Si for modej
maximally localized ~59%! on the crystalline cluster@v( j )
573.05 meV# as a function ofv(k). Shown are data fork and l
obeying energy conservationuv( j )2v(k)2v( l )u,w/2, wherew
50.2 meV~taken to be smaller thanw51 meV used in the calcu-
lation, to get a manageable graphics size!.
2-7
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between 0.03 and 0.3, which, for a mode with frequency, s
50 meV corresponds to an effective temperature of 160
400 K, respectively. This is huge compared to 2 K at which
the samples are held. A numerical investigation of Bickha8

indeed shows that a strong perturbation of the vibratio
spectrum ofa-Si can relax on a 100 ps time scale, compa
to 10 ps for a weak perturbation. In addition to pure vib
tional relaxation, it is also likely, as suggested by Bickha
and Feldman,7 that correspondingly large local deviations
the atomic displacements cause local structural rearra
ments which may relax to local metastable minima wh
emitting phonons. It is possible that these rearrangem
occur on nanosecond time scales. This effect would decr
in time as the perturbed structure progresses through de
local minima.

We conclude that current simple models fora-Si in com-
bination with presented above methods of analysis do
provide an answer to the question why vibrations in r
B

,

er

v.

a

R

ilo

s

n
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material under the specific experimental conditions appea
decay over such long time scales. A better answer may
obtained by studying larger and more realistic models wh
the required computational power becomes available. H
ever, considering the consistent results obtained thus far
different models~of sizes from 216 to 4096 atoms! and dif-
ferent techniques~perturbation theory and molecular dynam
ics! it is rather unlikely that the interpretation of the expe
mental findings in terms of the~pure! vibrational lifetimes
~that is, without considering structural relaxation and pos
bly photoexcited-electron recombination processes! will be
validated by investigating larger models.
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