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Emerging infectious disease is a key factor in the loss of amphibian diversity. In particular,

the disease chytridiomycosis has caused severe declines around the world. The lethal

fungal pathogen that causes chytridiomycosis, Batrachochytrium dendrobatidis (Bd),

has affected amphibians in many different environments. One primary question for

researchers grappling with disease-induced losses of amphibian biodiversity is what

abiotic factors drive Bd pathogenicity in different environments. To study environmental

influences on Bd pathogenicity, we quantified responses of Bd phenotypic traits

(e.g., viability, zoospore densities, growth rates, and carrying capacities) over a range

of environmental temperatures to generate thermal performance curves. We selected

multiple Bd isolates that belong to a single genetic lineage but that were collected

across a latitudinal gradient. For the population viability, we found that the isolates

had similar thermal optima at 21◦C, but there was considerable variation among the

isolates in maximum viability at that temperature. Additionally, we found the densities

of infectious zoospores varied among isolates across all temperatures. Our results

suggest that temperatures across geographic point of origin (latitude) may explain

some of the variation in Bd viability through vertical shifts in maximal performance.

However, the same pattern was not evident for other reproductive parameters (zoospore

densities, growth rates, fecundity), underscoring the importance of measuring multiple

traits to understand variation in pathogen responses to environmental conditions. We

suggest that variation among Bd genetic variants due to environmental factors may

be an important determinant of disease dynamics for amphibians across a range of

diverse environments.

Keywords: amphibian declines, chytridiomycosis, Batrachochytrium dendrobatidis, thermal performance curves,

climate, latitudinal gradient
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INTRODUCTION

Emerging infectious diseases are a primary driver of global
amphibian declines (1). Disease outbreaks from ranaviruses,
chytrid fungi, and bacterial pathogens have contributed to
an unprecedented loss of global amphibian diversity (2–4).
Therefore, understanding what factors influence the emergence,
spread, pathogenicity, and ecology of these pathogens is
important for amphibian conservation (5). Many of these
pathogens are strongly influenced by their local environments,
and corresponding shifts in pathogen phenotypic traits (e.g.,
reproductive rates, pathogen persistence in the environment) can
alter disease risks for susceptible amphibian host species (6–8).
By investigating how a pathogen responds to its environment, as
well as the genotypic and phenotypic variation that underpins
those responses, we can begin to unravel the disease dynamics
that threaten amphibians (9, 10).

Chytridiomycosis is one such infectious disease that is lethal
to many amphibian species and has caused global declines
in susceptible species (1, 11). The disease is caused by the
fungal pathogens, Batrachochytrium dendrobatidis (Bd) (12) and
Batrachochytrium salamandrivorans (Bsal) (13). However, Bd has
spread globally and impacted far more amphibian host species
than Bsal, making it a priority pathogen for study (1). Since
its discovery in 1999, Bd has spread rapidly through multiple
naïve amphibian communities, causing mass mortality events,
and even the complete extinction of amphibian species (11). No
other pathogen is known to have had such a ubiquitous effect
on such a broad range of host species and in so many different
environments (1, 14, 15). As a result, Bd-related declines have
been called, “the most spectacular loss of biodiversity due to
disease in recorded history” (11).

Bd has a two-stage life cycle that consists of a substrate-
dependent immobile sporangium and a free-living uniflagellated,
motile zoospore (12, 16). Infection occurs during the motile
zoospore stage of the pathogen’s life cycle (12, 16). The motile
zoospores encyst on a substrate, such as the keratinized tissue
found in amphibian larval mouthparts or on adult epidermis, and
then mature into a zoosporangium (12, 17, 18). Zoosporangia
produce motile zoospores and then release the new zoospores
into the environment to re-infect the same host or transmit
to another individual host (18). Once infection is established
within a host, increases in infection intensity (or pathogen load)
in amphibian skin is a key feature of pathogenesis (19, 20). As
such, understanding the factors that regulate Bd growth and
reproductive rates is integral to resolving questions concerning
pathogenesis and the disease ecology of this lethal disease system
(21, 22).

Recent phylogenetic analyses indicate that there are several
major lineages of Bd that are genetically distinct (23–25).
One lineage that has garnered considerable attention from
the scientific community, due to its high lethality, is the
Global Panzootic Lineage (BdGPL) (23, 24, 26). Genomic
sequencing of many Bd isolates within this lineage has shown
that it contains substantial genetic diversity, including two
genetic clades (BdGPL1 and BdGPL2) (26–28). With a global
distribution, BdGPL occurs in a wide range of amphibian

habitats and causes disease in diverse microclimates and thermal
environments (2, 29). As such, researchers have focused on
resolving the factors that determine variation among BdGPL
isolates to understand how temperature may mediate disease
dynamics (21, 22, 30, 31). To date, no clear patterns have emerged
that can explain the extent of variation among and within BdGPL
isolates across diverse thermal environments. This outstanding
question may be most appropriately investigated by generating
thermal performance curves, which would allow for comparative
investigations within the BdGPL lineage.

Thermal performance curves (TPCs) are widely used
to measure an organism’s performance across a range of
temperatures, estimate the thermal sensitivity of different traits,
and facilitate an understanding of ecological and evolutionary
processes that may explain an organism’s success within a
given environment (32–34). TPCs include measures of thermal
optimum [i.e., temperature optimum (Topt)], critical thermal
minimum (CTmin), critical thermal maximum (CTmax), and
thermal tolerance range (also known as thermal breadth; Tbr)
(Figure 1). Temperature sensitive parameters that determine an
organism’s TPC frequently vary with geographic clines (e.g.,
latitude), reflecting local adaptation (34, 35). TPC models (e.g.,
vertical or horizontal shifts) offer a framework to consider the
adaptive potential for temperature-sensitive organisms (36, 37).
For example, horizontal shifts toward a higher Topt would
provide evidence in support of the “hotter is better” hypothesis,
which predicts that organisms will adapt to thermal conditions
according to thermodynamic constraints (e.g., with higher Topt

in latitudes where mean temperatures are higher) (38–40)
(Figure 2).

It is generally thought that Bd has a thermal tolerance
range of 2–28 ◦C (42), with a Topt of 17–25 ◦C (8, 43), and
CTmin, and CTmax of 2–5 and 25–28 ◦C, respectively (42, 44).
Mounting evidence suggests that Bd isolates differ in their
thermal optima (8, 42, 44), but experimental approaches have
not yet explored this idea by comparing isolates collected across
a latitudinal gradient (45). We predicted that the TPCs of Bd
isolates collected along a latitudinal gradient would differ due to
thermal constraints in each region.More specifically, we expected
that isolates from northern latitudes would have a lower Topt

and exhibit a lower maximum performance at that temperature.
In contrast, we expected isolates from southern latitudes to
have a higher Topt and higher performance at that temperature
(Figure 2). To test these predictions, we generated TPCs for five
Bd isolates collected across a latitudinal gradient.

MATERIALS AND METHODS

Bd Isolate Collection and Maintenance
We used five different Bd isolates that originated from
amphibians in the United States (Table 1). The collection of Bd
isolates from the United States provides an ideal repertoire for
investigating phenotypic variation and differences in TPCs for
multiple reasons. First, the collection of Bd isolates that originate
from amphibians in the United States is large, with numerous
isolates from across the country, spanning a latitudinal gradient.
Second, previous work using a microfluidic PCR genotyping
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FIGURE 1 | Traditional thermal performance curve parameters for a given trait. When a performance curve is generated, the performance of a trait is plotted against a

temperature range. The thermal breadth (Tbr ), also referred to as the thermal tolerance range, is the temperature range at which a level of performance is achieved. A

thermal optimum (Topt ) is the temperature at which trait performance is maximized. The critical thermal minimum (CTmin) and maximum (CTmax ) are the lower and

upper thermal limits of a trait’s performance, respectively.

FIGURE 2 | Mean annual air temperatures throughout the United States (highest temperatures in black, lowest temperatures in white). Stars represent the locations

where isolates were collected from across a latitudinal gradient. The thermal constraint hypothesis (“hotter is better”) predicts that isolates from Northern latitudes will

have lower maximal performance at a lower Topt (blue curve) whereas isolates from Southern latitudes will have a higher maximal performance at a higher Topt due to

adaptations from local temperature regimes (orange curve). Temperature data from the National Forest Climate Change Maps website to generate this figure in QGIS

software (41).

method (one that targets ∼200 loci) suggested that BdGPL is the
primary lineage found in North America (25).

All isolates were cryoarchived and subsequently revived
according to standard protocols (46) prior to the beginning of
the experiment. Following isolate revival, we cultured the Bd
isolates in tryptone/gelatin hydrolysate/lactose (TGhL) liquid
growth media in 75 cm2 tissue culture flasks (47). We incubated

each isolate at 21◦C and monitored them through the Bd life
cycle until the point of peak zoospore densities (42). Once each
culture flask reached peak zoospore density, 2mL of culture
was transferred to a new culture flask containing 13mL of fresh
TGhL media for standard passage. We used a biosafety cabinet
for all laboratory work involving these isolates (e.g., passaging,
experimental setup).
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TABLE 1 | Genotyping for isolates of Batrachochytrium dendrobatidis, amphibian host, and geographic origins.

Genotype Isolate Location Host species name Latitude

GPL1 Louisiana (LA) New Orleans, LA Acris crepitans 29.9511 ◦N

GPL1 Tennessee (TN) Memphis, TN Lithobates sphenocephala 35.1495 ◦N

GPL1 Vermont (VT) VT Lithobates clamitans 44.5588 ◦N

GPL2 New Mexico (NM) Beaver Creek, NM Lithobates catesbeianus 34.5199 ◦N

GPL2 Ohio (OH) Toledo, OH Lithobates pipiens 41.6528 ◦N

Generating Thermal Performance Curves
We filtered each of the five cultures using sterile filter paper
(WhatmanQualitative Filter Papers, Grade 3) and used a vacuum
filtration pump to remove zoosporangia (47).With the remaining
filtrate, we quantified zoospores using a hemocytometer and
diluted each culture with TGhL to a concentration of ∼50 × 104

zoospores/mL (48). We inoculated the cultures of each isolate
containing only zoospores into 96-well-plates. We then added
50 µL of additional TGhL media to each well. We included five
negative control wells with 50 µL of 50 × 104 zoospores/mL
heat-killed zoospores and 50 µL of TGhL media for each isolate
(48). We filled the perimeter wells of the plate with 150 µL TGhL
media to provide a buffer against culture evaporation (45).

To establish a thermal profile for each respective isolate, we
incubated all isolates at multiple stable temperatures (4, 12, 17,
21, 25, 26, and 27 ◦C). Because we used only zoospores to start
the growth experiments, we were able to track and quantify
several parts of the Bd life cycle as they occurred at different time
points in these different temperature conditions. Specifically, by
tracking cultures for multiple successive days, we were able to
measure the change in population growth, time to maximum
zoospore densities, zoospore densities, and calculate fecundity
(49). At multiple time points following experimental set up (Day
0), we randomly selected five wells (N = 5) for each of two
destructive measures: zoospore counts and viability assays (49).

To quantify zoospore densities, we manually withdrew 20 µL
of culture and counted live zoospores using a hemocytometer
(48). Following these counts, we omitted those wells for the
remainder of the experiment (48). To measure population
growth, we conducted a standard viability assay (45). The
MTT viability assay is a standard microbiological technique
where a yellow tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) is reduced to purple MTT-
formazan crystals in metabolically active cells (50). These crystals
can be solubilized, and the color change can be quantified by
reading culture absorbance at 570 nm (45). We added 20 µL of
MTT to each experimental and negative control wells of the plate
selected for that day and incubated the plate at 21◦C for 2 h (45).
After incubation, we added 140 µL of the stop-reagent to stop
the reaction and solubilize the MTT-formazan crystals (45). We
then read culture absorbance at 570 nm using a Biotek EL x 800
Absorbance Reader.

Bd Isolate Genotyping
We genotyped the isolates using an amplicon sequencing
approach according to published protocols (51). Briefly, we

extracted DNA following the manufacturer’s protocol for the
Qiagen DNeasy Blood and Tissue kit. Next, to prepare raw
DNA extracts for sequencing, we cleaned each using an
isopropanol precipitation and preamplified each in two separate
PCR reactions, each containing 96 primer pairs. Primers were
designed to target 150–200 base pair regions of the Bd nuclear
and mitochondrial genome (51). After preamplification, samples
were cleaned using EXOSap-itTM (ThermoFisher Scientific) and
diluted 1:5 in water. Finally, we cleaned and diluted products
from the two preamplification reactions, combined in equal
proportions, and sent to the University of Idaho IBESTGenomics
Resources Core, where they were loaded into a Fluidigm
June LP 192.24 IFC (Fluidigm Inc.) for amplification and
barcoding. Amplified products were pooled and sequenced on an
Illumina MiSeq.

Raw sequences were processed as previously described
(25, 51). Raw reads were joined via FLASH [(52); v.1.2.11] and
consensus sequences for each sample/amplicon combination
were called using the reduce amplicons R script (https://github.
com/msettles/dbcAmplicons/blob/master/scripts/R/reduce_
amplicons.R). Here, consensus sequences use IUPAC ambiguity
codes to indicate multiple alleles at a locus. We compared the
consensus sequences of each of our five isolates to 21 previously
published Bd samples using a phylogenetic approach. We
selected previously published reference sequences to represent
every known major Bd lineage (25). To create a phylogeny,
we used a gene tree to species tree approach: first aligning all
sequences for each amplicon using MUSCLE [(53); v.3.32], then
creating a tree for each amplicon using RAxML [(54); v.8.2.11] to
search for the best scoring ML tree from 100 bootstrap replicates.
Afterwards, we used newick utils [(55); v.1.6] to collapse all nodes
in each amplicon tree with <10 bootstrap support. We then
input a total of 190 amplicon trees with collapsed branches into
Astral-III [(56); v.5.5.9], which estimates an unrooted species
tree given a set of unrooted gene trees using the multispecies
coalescent model.

Statistical Analysis
For all statistical analyses, we used R version 3.4.3 (57). We
used QGIS software and the “ggplot2” package within R to
generate figures. Summary statistics reported in the figures
and the tables include means ± standard error (SE) of the
viability, zoospore densities, or fecundity measure among isolates
or between genotypes. We analyzed the performance of each
isolate when grouped by genetic variant and independently to
compare for differences among isolates at Topt , CTmin, and
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CTmax temperature treatments. We used Analysis of Variance
(ANOVA) andGamesHowell post-hoc tests tomake comparisons
in mean maximum viability (OD following the MTT assay),
mean maximum zoospore densities, mean fecundity, and time
to maximum zoospore densities. We used a non-parametric
post-hoc test when there was a violation of the homogenous
variance assumption for each of the traits compared among
isolates. To calculate mean maximum viability and maximum
zoospore densities, we used the measures from within the 2–
6 day period at which cultures exhibited maximum viability or
zoospore densities in each temperature condition.

To make comparisons of fecundity, we calculated the ratio
of zoospores densities to mean culture viability. Within the
fecundity calculations, all viability measurements that were
<0.005 were considered zeros to ensure that fecundity ratios
were not artificially inflated. For statistical analyses, we log-
transformed the fecundity metric and added a correction factor
of 1 to accommodate for the wells that had zero zoospores.
For comparing genetic variants in viability, zoospore densities,
fecundity, and time to maximum zoospore densities, we used
Welch’s t-test because we had unequal variance after grouping
by genotype. We used a Bonferroni correction after running
the t-test at each temperature experiment for comparisons of
MTT across the thermal range to reduce the likelihood of a
type-1 error.

To further quantify the differences across temperatures, we
fit a logistic growth curve to the normalized optical density
measurements (i.e., Bd viability) data time series for each isolate-
temperature combination. This approach allowed us to estimate
the intrinsic growth rate (r) and carrying capacity (K). We used
the resulting estimates for r and K to quantify differences among
isolates over the range of temperatures considered. To calculate
95% confidence intervals for these estimates, we used likelihood
profile-based methods (58, 59). We attempted to constrain r
estimates to follow a Johnson–Lewin (J–L) curve as a function
of temperature to characterize the thermal breadth of each isolate
(59). See the Supplementary Material for details.

RESULTS

Differential Responses to Temperature
Between Genetic Variants
Our genetic sequencing revealed that these isolates belong to the
BdGPL clades 1 or 2 (Table 1). When we grouped the isolates
by genetic lineage, we found no differences in viability between
BdGPL1 and BdGPL2 lineages at the Topt , 21

◦C [t(57.51) = 0.91,
p = 0.37; Figure 3A]. Furthermore, there were no significant
differences in viability between BdGPL1 and BdGPL2, except at
the low temperature of 4 ◦C and the high temperature at 27 ◦C
(Figure 3A, Table 2).

We also measured zoospore densities for the two genetic
lineages in all temperatures because the capacity to generate
high zoospore densities is thought to be a critical factor for
disease development (21). We found patterns in our measures of
zoospore densities that differed from those in our viability assays
(Figure 3B). There were significant differences between BdGPL1

and BdGPL2 in zoospore densities at every temperature where
zoospores were produced (Figure 3B, Table 3). Specifically,
BdGPL1 had higher zoospore densities than BdGPL2 at all
temperatures except 4 ◦C (Table 3). We found that fecundity
was significantly different between BdGPL1 and BdGPL2 at
three temperatures: 4 ◦C [t(182.81) = −3.2, p = 0.002], 17 ◦C
[t(162.63) = 6.039, p ≤ 0.001], and 21 ◦C [t(131.85) = 6.9127, p ≤

0.001] (Figure 3C). There were no significant differences between
BdGPL1 and BdGPL2 in the time tomaximum zoospore densities
at any temperature except 21 ◦C [t(22.29) =−2.7584, p= 0.01].

Differential Responses to Temperature
Among the Bd Isolates
All isolates exhibited maximum viability at 21◦C. However, there
were differences among isolates in their mean viability at the Topt

of 21◦C [ANOVA, F(4,63) = 15.94, P< 0.001,Table 2, Figure 3D].
The isolate from Louisiana exhibited the greatest mean viability
in the Topt , 21

◦C (Table 2, Figure 3D), as well as at every other
temperature treatment except 27 ◦C (Table 2, Figure 3D). The
isolate from Vermont exhibited the lowest viability except in the
low temperature treatments of 4 and 12 ◦C (Table 2, Figure 3D).

We found that there were differences among the Bd
isolates in their viability in both low and high temperature
conditions (Table 2, Figure 3D). For the lowest temperature
treatment, all isolates exhibited minimal growth at 4 ◦C but
there were differences among the isolates in viability at
that temperature [Table 2; ANOVA, F(4,45) = 146.6, P <

0.001]. The isolates also differed in their responses to high
temperature treatments (Table 2, Figure 3D). The isolate from
Ohio exhibited significantly greater viability at the highest
temperature treatment of 27 ◦C [ANOVA, F(4,70) = 25.82, P
< 0.001; Game’s Howell, P < 0.01], whereas the isolate from
Vermont had low viability at 26 ◦C and was not viable at 27 ◦C
(Figure 3D).

The patterns found in zoospore densities among isolates also
differed from viability results (Figure 3E). Specifically, two of the
isolates produced their maximum zoospore densities at the low
temperatures of 4 and 12 ◦C (Figure 3E, Table 4). Notably, for
the New Mexico isolate, zoospore densities were highest at 4 ◦C
and were dramatically lower at all other temperatures (Table 4,
Figure 3E). Accordingly, the New Mexico isolate exhibited the
highest fecundity (zoospores per viability measure) at 4 ◦C
(Figure 3F). All isolates exhibited a similar pattern, with higher
fecundity in lower temperatures, but it was most pronounced in
the New Mexico isolate at 4 ◦C. In addition, we found that the
time to maximum zoospore densities differed among isolates at
4 ◦C [ANOVA, F(4,70) = 250.9, P < 0.001] and 21◦C [ANOVA,
F(4,70) = 48.36, P < 0.001]. We also found that, although the
cultures were viable and growth measurements increased at the
higher temperatures of 25, 26, and 27 ◦C, none of the isolates
produced zoospores at these high temperatures (Figure 3E).

We then assessed how these r and K estimates varied with
temperature for each isolate. The overall trend for all isolates
is r estimates that increase and then plateau for temperatures
up to 21 ◦C (Figure 4A). However, for higher temperatures
(25–27 ◦C), the r estimates are larger and more variable both
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FIGURE 3 | Thermal performance curves for isolates of Batrachochytrium dendrobatidis (Bd). Five isolates were collected from across a latitudinal gradient in the

United States, genotyped, and tested for these responses across the known thermal range for Bd (4–27 ◦C). Data show means (±SE) for Bd viability (A), zoospore

densities (B), and fecundity (calculated as optical density/zoospore densities) (C), for two Bd genotypes, Global Panzootic Lineage 1 and Global Panzootic Lineage 2

(BdGPL1 and BdGPL2; top row, red and blue). Additionally, data show means (±SE) for Bd viability (D), zoospore densities (E), and fecundity (F), for each of the five

isolates that were collected in Louisiana (LA, blue), New Mexico (NM, organe), Ohio (OH, green), Tennessee (TN, red), and Vermont (VT, purple). Significance levels are

indicated by the asterisks as such: * < 0.05, ** < 0.01, *** < 0.001.

across isolates and in terms of having larger confidence intervals.
The intrinsic growth rates at the higher temperatures, however,
do not yield much long-term growth. The corresponding K
estimates also increase and plateau at ∼21◦C, but then markedly
decline at the higher temperatures (Figure 4B). The combined
effect is a short-lived exponential growth phase that quickly
reaches a relatively low upper bound at these high temperatures
(Supplementary Materials).

DISCUSSION

Chytridiomycosis is a disease that has impacted amphibians
in a wide range of environmental conditions (21, 60). Past
studies have attempted to link Bd phenotypic patterns with
environmental factors in order to understand how abiotic factors
might mitigate or exacerbate disease (5, 30, 43, 61). For example,
both Becker et al. (30) and Greener et al. (21) documented
considerable phenotypic variation for isolates within the
BdGPL that was associated with differential pathogenicity in
common susceptible host species (Lithobates sylvaticus andAlytes
obstetricans, respectively). In addition, Lambertini et al. (22)
and Muletz-Wolz et al. (31) demonstrated phenotypic variation
in morphological characteristics (e.g., zoosporangia size) in
multiple isolates from within the BdGPL lineage. However,

to date, studies that have tried to link pathogen traits to
environmental predictors have not been able to account for
the extent of phenotypic variation among Bd isolates across
different environments [e.g., Bd growth has not been linked to
any environmental parameters such asmean annual temperature,
mean annual precipitation, elevation, etc., (22, 31)].

We predicted that quantifying Bd growth and reproductive
traits from isolates of the same genotype, but collected across
a latitudinal gradient (representing different mean annual air
temperature regimes), might show distinct TPCs. We conducted
temperature experiments to measure traits related to growth,
reproduction, and fitness across the known thermal range of Bd
and generated TPCs for five isolates from within the BdGPL
lineage. Our results reveal informative similarities and differences
in several of the measured traits between two genetic lineages
(BdGPL1 and BdGPL2) and among five Bd isolates.

We found that there was no obvious geographic pattern that
could explain the distribution of genetic variants of BdGPL
collected across a latitudinal gradient within the United States.
Three of our isolates nested within the BdGPL1 clade and each
originated from a different latitude (Table 1). Two of the isolates
nested within the BdGPL2 clade and similarly originated from
different latitudes. Both genetic variants had the same Topt of
21 ◦C, but the maximum viability differed between BdGPL1 and
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BdGPL2. In addition, while both genetic variants had maximum
zoospores densities and fecundity at low temperatures (4 ◦C),
there were differences between BdGPL1 and BdGPL2 in these key
reproductive traits. These findings corroborate previous studies
that suggest considerable variation exists even within a single
Bd lineage (21, 30). We suggest that there are likely numerous
factors contributing to variation within BdGPL in addition to
thermal conditions. For example, each isolate for this study was
collected from a unique host species (Table 1), with each host
species occupying habitats that differ in a multitude of factors,
including water pH, drying periods, microbiome composition,
and other seasonality effects that likely have a large impact on
Bd (5, 30, 43). Although it is impractical for Bd researchers
to eliminate all confounding variables for Bd isolate origin, we
should nevertheless make efforts to treats isolates identically
following isolation (e.g., during laboratory maintenance) and
acknowledge these limitations for resolving questions concerning
differential pathogenicity.

We found intriguing patterns in the responses of Bd to
temperature when assessing differences among all five isolates.
To begin with, we found that the overall patterns of viability were
similar and exhibited a Topt at the intermediate temperature of
21◦C. However, within each temperature, the isolates frequently
differed from each other in their maximal viability, zoospore
densities, fecundity, growth rates, and carrying capacities. These
differences were pronounced at either end of the thermal
spectrum, at low (4 ◦C) and high (26 and 27 ◦C) temperatures.
For example, the temperature of the Topt for zoospores densities
is lower than 21◦C, with far more zoospores produced in
low temperatures (4 and 12◦C), for a subset of the isolates.
Furthermore, the fecundity of Bdwas highest in low temperatures
for every isolate. These findings are in line with those from
previous studies that suggest understanding Bd responses
(particularly zoospore production) in low temperatures is
important to resolving the complexities of the fundamental niche
and the disease ecology of Bd (42, 49, 62).

Additionally, we observed interesting patterns of Bd viability,
growth rates, and carrying capacities at both extremes of the
thermal range, making it difficult to determine the true CTmax

and CTmin.Notably, we found the greatest complexity in thermal
responses at the CTmax; most of the Bd isolates (all except
Vermont) exhibited at least some zoosporangia development,
and early exponential growth (r), in the high temperature
treatments (25, 26, and even 27 ◦C). Yet none of the isolates
produced any zoospores and growth could not be sustained for
the duration of the experiment. In addition, we found that for
the higher temperatures (>21◦C) considered in this experiment,
the r estimates did not decline as one might expect. Rather,
it was the K estimates that seemed to decline over the upper
temperatures. As a result, the r estimates (constrained to follow
a J–L curve) were overfit to the mid-range temperature data,
causing unrealistically high CTmax and Topt estimates, and poor
r estimates, for high and low temperatures. Our findings for
the higher temperature treatments differ from some previous
studies that found no Bd growth at temperatures above 24 ◦C
(31, 43, 62). Thus, our findings that Bd can remain viable at
high temperatures, but fail to produce zoospores, underscore the
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TABLE 3 | Zoospore density descriptive difference of means using t-tests between genotypes.

4 ◦C 12 ◦C 17 ◦C 21 ◦C 25 ◦C 26 ◦C 27 ◦C

t df p t df p t df p t df p t df p t df p t df p

Genotype −2.0148 56 0.049 2.4708 51 0.017 8.035 67.4 <0.001 11.56 54.3 <0.001 NA NA NA NA NA NA NA NA NA

TABLE 4 | Zoospore densities across temperatures (means, SE, r, and K).

Isolate ID 4 ◦C 12 ◦C 17 ◦C 21 ◦C 25 ◦C 26 ◦C 27 ◦C

Mean (±SE) Mean (±SE) Mean (±SE) Mean (±SE) Mean (±SE) Mean (±SE) Mean (±SE)

GPL1 LA 431.9 ± 27.141 314.7 ± 92.641 235.7 ± 27.795 172.8 ± 10.806 NA 0 0

VT 38.9 ± 3.998 89.1 ± 5.996 127.3 ± 4.525 84.6 ± 16.238 NA 0 0

TN 78.4 ± 4.296 56.1 ± 10.333 119.7 ± 17.980 120.6 ± 9.395 NA 0 0

GPL2 NM 492.1 ± 13.133 37.4 ± 6.995 4.5 ± 0.885 2.8 ± 0.433 NA 0 0

OH 70.3 ± 4.853 89.2 ± 16.559 65.7 ± 11.233 30.7 ± 3.596 NA 0 0

FIGURE 4 | Logistic growth curve parameter estimates for each isolate and temperature combination. Intrinsic exponential growth rate (r) estimates (A) carrying

capacity (K) estimates (B). Solid circles indicate the best fit parameter values and vertical bars show the 95% confidence intervals. The dashed vertical bars indicate

situations in which the confidence interval for the parameter of interest had a poorly resolved upper end point due to parameter identifiability issues (e.g., for time

series data in the exponential growth phase, all values of K above a certain threshold will give equally good fits). Not shown, for clarity: VT-26 ◦C r estimate is 8.58, CI

= (4.61, 14.12). See Supplementary Material for further details.

importance of using a viability assay to investigate additional
questions concerning Bd responses to temperature (45).

Taken together, the variation in TPCs of the maximum
viability of Bd isolates collected across a latitudinal gradient did
not fit a pattern that could be explained by the “hotter is better”
hypothesis; all isolates had the same Topt for viability at 21◦C.
Instead, our viability results suggest that a vertical shift model
may better explain the patterns for the TPCs of all five isolates.
Namely, our viability measurements, and results from carrying
capacities (K) among isolates, provide some evidence that
mean temperatures across latitudes may influence the maximal
performance of Bd. The isolates from northern latitudes (i.e.,
Vermont & Ohio), where mean temperatures are generally lower
(∼4–12 ◦C; 61), exhibited lower viability and carrying capacities
across temperatures, including at their Topt . In contrast, the
isolates from Louisiana, New Mexico, and Tennessee, in more

southern latitudes where mean temperatures are generally higher
(∼14–25 ◦C; 61), exhibited increased viability and carrying
capacities across temperatures, including at their Topt . As such,
our evidence indicating a vertical shift in TPCs suggest that
the mean temperatures experienced by amphibians across a
latitudinal gradient may influence maximal viability—but not
the Topt or CTmax—of Bd. We note, however, that our results
for our other reproductive parameters, including zoospore
densities and fecundity, did not exhibit a similar pattern,
underscoring the importance of measuring multiple traits to
gain a full understanding of the complexities of Bd responses to
temperature (37, 38).

Disease ecologists are concerned with how changes in
environmental factors, such as temperature gradients, may
influence disease dynamics through alterations in the biology
of pathogens such as Bd (63, 64). Environmental influences
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on Bd traits such as growth and reproduction may ultimately
influence the disease outcomes of chytridiomycosis (42, 44). For
example, temperature conditions within local environments may
increase viability, zoospores densities, fecundity, growth rates, or
carrying capacities of Bd, leading to higher infectivity, and greater
threat of disease for vulnerable amphibians (49). The threat of
biodiversity loss for amphibian communities may be exacerbated
from diseases like chytridiomycosis in the coming decades (63).
To intervene in the continued population declines of amphibians,
we must understand how pathogen biology is mediated across
different environments, and within and among genetic lineages.
We must also determine what environmental factors are driving
the disease dynamics responsible for the disease-induced losses
of amphibian biodiversity.
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