164 research outputs found

    Region Spherical Harmonic Magnetic Modeling from Near-Surface and Satellite-Altitude Anomlaies

    Get PDF
    The compiled near-surface data and satellite crustal magnetic measured data are modeled with a regionally concentrated spherical harmonic presentation technique over Australia and Antarctica. Global crustal magnetic anomaly studies have used a spherical harmonic analysis to represent the Earth's magnetic crustal field. This global approach, however is best applied where the data are uniformly distributed over the entire Earth. Satellite observations generally meet this requirement, but unequally distributed data cannot be easily adapted in global modeling. Even for the satellite observations, due to the errors spread over the globe, data smoothing is inevitable in the global spherical harmonic presentations. In addition, global high-resolution modeling requires a great number of global spherical harmonic coefficients for the regional presentation of crustal magnetic anomalies, whereas a lesser number of localized spherical coefficients will satisfy. We compared methods in both global and regional approaches and for a case where the errors were propagated outside the region of interest. For observations from the upcoming Swarm constellation, the regional modeling will allow the production a lesser number of spherical coefficients that are relevant to the region of interes

    Subglacial topography and geothermal heat flux: potential interactions with drainage of the Greenland ice sheet

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1029/2007GL030046.[1] Many of the outlet glaciers in Greenland overlie deep and narrow trenches cut into the bedrock. It is well known that pronounced topography intensifies the geothermal heat flux in deep valleys and attenuates this flux on mountains. Here we investigate the magnitude of this effect for two subglacial trenches in Greenland. Heat flux variations are estimated for idealized geometries using solutions for plane slopes derived by Lachenbruch (1968). It is found that for channels such as the one under Jakobshavn Isbræ, topographic effects may increase the local geothermal heat flux by as much as 100%

    Recent magnetic views of the Antarctic lithosphere

    Get PDF
    Magnetic anomaly investigations are a key tool to help unveil subglacial geology, crustal architecture and the tectonic and geodynamic evolution of the Antarctic continent. Here, we present the second generation Antarctic magnetic anomaly compilation ADMAP 2.0 (Golynsky et al., 2018), that now includes a staggering 3.5 million line-km of aeromagnetic and marine magnetic data, more than double the amount of data available in the first generation effort. All the magnetic data were corrected for the International Geomagnetic Reference Field, diurnal effects, high-frequency errors and leveled, gridded,and stitched together. The new magnetic anomaly dataset provides tantalising new views into the structure and evolution of the Antarctic Peninsula and the West Antarctic Rift System within West Antarctica, and Dronning Maud Land, the Gamburtsev Subglacial Mountains, the Prince Charles Mountains, Princess Elizabeth Land, and Wilkes Land in East Antarctica, as well as key insights into oceanic gateways. Our magnetic anomaly compilation is helping unify disparate regional geologic and geophysical studies by providing larger-scale perspectives into the major tectonic and magmatic processes that affected Antarctica from Precambrian to Cenozoic times, including e.g. the processes of subduction and magmatic arc development, orogenesis, accretion, cratonisation and continental rifting, as well as continental margin and oceanic basin evolution. The international Antarctic geomagnetic community remains very active in the wake of ADMAP 2.0, and we will showcase some of their key ongoing study areas, such as the South Pole and Recovery frontiers, the Ross Ice Shelf, Dronning Maud Land and Princess Elizabeth Land

    Exploiting inflammation for therapeutic gain in pancreatic cancer

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy associated with <5% 5-year survival, in which standard chemotherapeutics have limited benefit. The disease is associated with significant intra- and peritumoral inflammation and failure of protective immunosurveillance. Indeed, inflammatory signals are implicated in both tumour initiation and tumour progression. The major pathways regulating PDAC-associated inflammation are now being explored. Activation of leukocytes, and upregulation of cytokine and chemokine signalling pathways, both have been shown to modulate PDAC progression. Therefore, targeting inflammatory pathways may be of benefit as part of a multi-target approach to PDAC therapy. This review explores the pathways known to modulate inflammation at different stages of tumour development, drawing conclusions on their potential as therapeutic targets in PDAC

    New Magnetic Anomaly Map of the Antarctic

    Get PDF
    The second generation Antarctic magnetic anomaly compilation for the region south of 60 degrees S includes some 3.5 million line-km of aeromagnetic and marine magnetic data that more than doubles the initial map's near-surface database. For the new compilation, the magnetic data sets were corrected for the International Geomagnetic Reference Field, diurnal effects, and high-frequency errors and leveled, gridded, and stitched together. The new magnetic data further constrain the crustal architecture and geological evolution of the Antarctic Peninsula and the West Antarctic Rift System in West Antarctica, as well as Dronning Maud Land, the Gamburtsev Subglacial Mountains, the Prince Charles Mountains, Princess Elizabeth Land, and Wilkes Land in East Antarctica and the circumjacent oceanic margins. Overall, the magnetic anomaly compilation helps unify disparate regional geologic and geophysical studies by providing new constraints on major tectonic and magmatic processes that affected the Antarctic from Precambrian to Cenozoic times.Korea Polar Research Institute (KOPRI) programs, PM15040 and PE17050Germany's AWI/Helmholtz Center for Polar and Marine ResearchFederal Institute for Geosciences and Natural ResourcesBritish Antarctic Survey/Natural Environmental Research CouncilItalian Antarctic Research ProgrammeRussian Ministry of Natural ResourcesU.S. National Science Foundation and National Space and Aeronautics AdministrationAustralian Antarctic Division and Antarctic Climate & Ecosystem Cooperative Research CentreFrench Polar InstituteGlobal geomagnetic observatories network (INTERMAGNET

    On the mechanism of ubiquinone mediated photocurrent generation by a reaction center based photocathode

    Get PDF
    Upon photoexcitation, the reaction center (RC) pigment-proteins that facilitate natural photosynthesis achieve a metastable separation of electrical charge among the embedded cofactors. Because of the high quantum efficiency of this process, there is a growing interest in their incorporation into biohybrid materials for solar energy conversion, bioelectronics and biosensing. Multiple bioelectrochemical studies have shown that reaction centers from various photosynthetic organisms can be interfaced with diverse electrode materials for the generation of photocurrents, but many mechanistic aspects of native protein functionality in a non-native environment is unknown. In vivo, RC's catalyse ubiquinone-10 reduction, protonation and exchange with other lipid phase ubiquinone-10s via protein-controlled spatial orientation and protein rearrangement. In contrast, the mechanism of ubiquinone-0 reduction, used to facilitate fast RC turnover in an aqueous photoelectrochemical cell (PEC), may not proceed via the same pathway as the native cofactor. In this report we show truncation of the native isoprene tail results in larger RC turnover rates in a PEC despite the removal of the tail's purported role of ubiquinone headgroup orientation and binding. Through the use of reaction centers with single or double mutations, we also show the extent to which two-electron/two-proton ubiquinone chemistry that operates in vivo also underpins the ubiquinone-0 reduction by surface-adsorbed RCs in a PEC. This reveals that only the ubiquinone headgroup is critical to the fast turnover of the RC in a PEC and provides insight into design principles for the development of new biophotovoltaic cells and biosensors
    • …
    corecore