27 research outputs found

    Increased network centrality of the anterior insula in early abstinence from alcohol

    No full text
    [EN] Abnormal resting-state functional connectivity, as measured by functional magnetic resonance imaging (MRI), has been reported in alcohol use disorders (AUD), but findings are so far inconsistent. Here, we exploited recent developments in graph-theoretical analyses, enabling improved resolution and fine-grained representation of brain networks, to investigate functional connectivity in 35 recently detoxified alcohol dependent patients versus 34 healthy controls. Specifically, we focused on the modular organization, that is, the presence of tightly connected substructures within a network, and on the identification of brain regions responsible for network integration using an unbiased approach based on a large-scale network composed of more than 600 a priori defined nodes. We found significant reductions in global connectivity and region-specific disruption in the network topology in patients compared with controls. Specifically, the basal brain and the insular-supramarginal cortices, which form tightly coupled modules in healthy subjects, were fragmented in patients. Further, patients showed a strong increase in the centrality of the anterior insula, which exhibited stronger connectivity to distal cortical regions and weaker connectivity to the posterior insula. Anterior insula centrality, a measure of the integrative role of a region, was significantly associated with increased risk of relapse. Exploratory analysis suggests partial recovery of modular structure and insular connectivity in patients after 2 weeks. These findings support the hypothesis that, at least during the early stages of abstinence, the anterior insula may drive exaggerated integration of interoceptive states in AUD patients with possible consequences for decision making and emotional states and that functional connectivity is dynamically changing during treatment.The authors wish to thank Prof. Edward Bullmore and Prof. Nicholas Crossley for providing the brain parcellation template and Prof. Markus Heilig for interesting discussions. This work was supported by the European Union's Horizon 2020 research and innovation programme (668863-SyBil-AA), the ERA-Net NEURON programme (FKZ 01EW1112-TRANSALC) and Deutsche Forschungsgemeinschaft (center grants SFB636 and TRR 265 subproject B0867). SC acknowledges the Spanish State Research Agency through the Severo Ochoa Programme for Centres of Excellence in R&D (SEV-2017-0723) and the Ministerio de Economía y Competitividad (MINECO) and FEDER funds under grants BFU2015-64380-C2-1-R and BFU2015-64380-C2-2-R. Open Access funding enabled and organized by Projekt DEAL.Bordier, C.; Weil, G.; Bach, P.; Scuppa, G.; Nicolini, C.; Forcellini, G.; Pérez-Ramírez, MÚ.... (2022). Increased network centrality of the anterior insula in early abstinence from alcohol. Addiction Biology. 27(1):1-12. https://doi.org/10.1111/adb.1309611227

    The Effects of Pharmacological Opioid Blockade on Neural Measures of Drug Cue-Reactivity in Humans

    No full text
    Interactions between dopaminergic and opioidergic systems have been implicated in the reinforcing properties of drugs of abuse. The present study investigated the effects of opioid blockade, via naltrexone, on functional magnetic resonance imaging (fMRI) measures during methamphetamine cue-reactivity to elucidate the role of endogenous opioids in the neural systems underlying drug craving. To investigate this question, non-treatment seeking individuals with methamphetamine use disorder (N=23; 74% male, mean age=34.70 (SD=8.95)) were recruited for a randomized, placebo controlled, within-subject design and underwent a visual methamphetamine cue-reactivity task during two blood-oxygen-level dependent (BOLD) fMRI sessions following 3 days of naltrexone (50 mg) and matched time for placebo. fMRI analyses tested naltrexone-induced differences in BOLD activation and functional connectivity during cue processing. The results showed that naltrexone administration reduced cue-reactivity in sensorimotor regions and related to altered functional connectivity of dorsal striatum, ventral tegmental area, and precuneus with frontal, visual, sensory, and motor-related regions. Naltrexone also weakened the associations between subjective craving and precuneus functional connectivity with sensorimotor regions and strengthened the associations between subjective craving and dorsal striatum and precuneus connectivity with frontal regions. In conclusion, this study provides the first evidence that opioidergic blockade alters neural responses to drug cues in humans with methamphetamine addiction and suggests that naltrexone may be reducing drug cue salience by decreasing the involvement of sensorimotor regions and by engaging greater frontal regulation over salience attribution

    Brain Activation Associated with Attentional Bias in Smokers is Modulated by a Dopamine Antagonist

    Get PDF
    Contains fulltext : 119566.pdf (publisher's version ) (Closed access)Attentional bias in substance-dependent individuals is the tendency to automatically direct the attention to substance-related cues in the environment. Attentional bias is known to be associated with clinical measures such as relapse or successful quitting in smokers. It has been suggested that attentional bias emerges as a consequence of dopaminergic activity evoked by substance-related cues. The current functional magnetic resonance imaging study employed a dopaminergic challenge in order to test whether brain activation associated with attentional bias in smokers could be modulated by a dopamine antagonist. A total of 25 smokers were compared with 24 controls. Participants were scanned twice while performing a pictorial attentional bias task. Haloperidol (2 mg), a selective D2/D3 dopamine antagonist, or placebo was orally administered 4 h before each scanning session in a double-blind randomized cross-over design. Imaging analyses were performed in a priori selected regions of interest. Results showed that smokers had enhanced brain activation compared with controls in the dorsal anterior cingulate cortex (dACC), right dorsolateral prefrontal cortex (r-DLPFC), and left superior parietal lobe (I-SPL) after placebo. Group x medication interactions were found in the dACC and r-DLPFC, with no differences between groups in these regions after haloperidol. The current findings suggest that a pharmacologically induced reduction in dopamine normalizes brain activation associated with attentional bias in the dACC and DLPFC in smokers, probably because salience of these cues is no longer detected when dopamine activity is reduced.8 p
    corecore