29 research outputs found

    Assessment of Efficiency of Drying Grain Materials Using Microwave Heating

    Full text link
    We present results of experimental work on studying the drying of a dense layer of grain using microwave heating. We investigated a series of techniques to supply heat to grain to assess energy efficiency of a microwave field. We studied the following ways of drying: a microwave method, a pulsating microwave method, a microwave-convective cyclic method with blow of a layer with heated air flow and air without preheating, simultaneous microwave-convective drying method.Studying the kinetics of drying in a microwave field showed that we can divide the process into heating periods (zero drying rate), constant (first drying rate) and falling (second drying rate). These periods are characteristic for drying of colloidal capillary-porous bodies at other methods of heat supply. We obtained empirical relationships for the drying rate and the average temperature of grain in the first period based on the generalization of experimental data on the study on drying of grain of buckwheat, barley, oats, and wheat. We presented kinetic dependences in a dimensionless form. They summarize data on the studied grains. The aim of comprehensive studies of various methods of heat supply during drying was determination of the optimal method and rational operational parameters, which ensure high intensity of the process and the required quality of the finished product with minimal energy consumption.All studies took place under identical conditions and for the same grain (oats) to ensure the accuracy of the comparison. We determined that the most preferable method is a simultaneous microwave-convective energy supply without air preheating, which minimizes specific energy consumption. Experimental studies on drying using a microwave field made possible to select the required process parameters: power, heating rate, mass, and form of loading. We plan to develop a technology for drying of grain using microwave energy based on the study dat

    Assessment of Efficiency of Drying Grain Materials Using Microwave Heating

    Get PDF
    We present results of experimental work on studying the drying of a dense layer of grain using microwave heating. We investigated a series of techniques to supply heat to grain to assess energy efficiency of a microwave field. We studied the following ways of drying: a microwave method, a pulsating microwave method, a microwave-convective cyclic method with blow of a layer with heated air flow and air without preheating, simultaneous microwave-convective drying method.Studying the kinetics of drying in a microwave field showed that we can divide the process into heating periods (zero drying rate), constant (first drying rate) and falling (second drying rate). These periods are characteristic for drying of colloidal capillary-porous bodies at other methods of heat supply. We obtained empirical relationships for the drying rate and the average temperature of grain in the first period based on the generalization of experimental data on the study on drying of grain of buckwheat, barley, oats, and wheat. We presented kinetic dependences in a dimensionless form. They summarize data on the studied grains. The aim of comprehensive studies of various methods of heat supply during drying was determination of the optimal method and rational operational parameters, which ensure high intensity of the process and the required quality of the finished product with minimal energy consumption.All studies took place under identical conditions and for the same grain (oats) to ensure the accuracy of the comparison. We determined that the most preferable method is a simultaneous microwave-convective energy supply without air preheating, which minimizes specific energy consumption. Experimental studies on drying using a microwave field made possible to select the required process parameters: power, heating rate, mass, and form of loading. We plan to develop a technology for drying of grain using microwave energy based on the study dat

    Wiring of Photosystem II to Hydrogenase for Photoelectrochemical Water Splitting.

    Get PDF
    In natural photosynthesis, light is used for the production of chemical energy carriers to fuel biological activity. The re-engineering of natural photosynthetic pathways can provide inspiration for sustainable fuel production and insights for understanding the process itself. Here, we employ a semiartificial approach to study photobiological water splitting via a pathway unavailable to nature: the direct coupling of the water oxidation enzyme, photosystem II, to the H2 evolving enzyme, hydrogenase. Essential to this approach is the integration of the isolated enzymes into the artificial circuit of a photoelectrochemical cell. We therefore developed a tailor-made hierarchically structured indium-tin oxide electrode that gives rise to the excellent integration of both photosystem II and hydrogenase for performing the anodic and cathodic half-reactions, respectively. When connected together with the aid of an applied bias, the semiartificial cell demonstrated quantitative electron flow from photosystem II to the hydrogenase with the production of H2 and O2 being in the expected two-to-one ratio and a light-to-hydrogen conversion efficiency of 5.4% under low-intensity red-light irradiation. We thereby demonstrate efficient light-driven water splitting using a pathway inaccessible to biology and report on a widely applicable in vitro platform for the controlled coupling of enzymatic redox processes to meaningfully study photocatalytic reactions.This work was supported by the U.K. Engineering and Physical Sciences Research Council (EP/H00338X/2 to E.R. and EP/G037221/1, nanoDTC, to D.M.), the UK Biology and Biotechnological Sciences Research Council (BB/K002627/1 to A.W.R. and BB/K010220/1 to E.R.), a Marie Curie Intra-European Fellowship (PIEF-GA-2013-625034 to C.Y.L), a Marie Curie International Incoming Fellowship (PIIF-GA-2012-328085 RPSII to J.J.Z) and the CEA and the CNRS (to J.C.F.C.). A.W.R. holds a Wolfson Merit Award from the Royal Society.This is the final version of the article. It first appeared from ACS Publications via http://dx.doi.org/10.1021/jacs.5b0373

    Increased photosystem II stability promotes H-2 production in sulfur-deprived Chlamydomonas reinhardtii

    No full text
    Photobiological H-2 production is an attractive option for renewable solar fuels. Sulfur-deprived cells of Chlamydomonas reinhardtii have been shown to produce hydrogen with the highest efficiency among photobiological systems. We have investigated the photosynthetic reactions during sulfur deprivation and H-2 production in the wild-type and state transition mutant 6 (Stm6) mutant of Chlamydomonas reinhardtii. The incubation period (130 h) was dissected into different phases, and changes in the amount and functional status of photosystem II (PSII) were investigated in vivo by electron paramagnetic resonance spectroscopy and variable fluorescence measurements. In the wild type it was found that the amount of PSII is decreased to 25% of the original level; the electron transport from PSII was completely blocked during the anaerobic phase preceding H2 formation. This block was released during the H-2 production phase, indicating that the hydrogenase withdraws electrons from the plastoquinone pool. This partly removes the block in PSII electron transport, thereby permitting electron flow from water oxidation to hydrogenase. In the Stm6 mutant, which has higher respiration and H-2 evolution than the wild type, PSII was analogously but much less affected. The addition of the PSII inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea revealed that similar to 80% of the H-2 production was inhibited in both strains. We conclude that (i) at least in the earlier stages, most of the electrons delivered to the hydrogenase originate from water oxidation by PSII, (ii) a faster onset of anaerobiosis preserves PSII from irreversible photoinhibition, and (iii) mutants with enhanced respiratory activity should be considered for better photobiological H-2 production

    Investigation of Heat Exchange in a Blown Dense Layer of Granular Materials

    Full text link
    Experimental studies of heat exchange between a dense layer of granular material and a stream of heated air have been carried out. As a granular material, claydite and gravel were used in a moving and a stationary layer. Temperature curves were obtained for the air flow and the solid component at the inlet and outlet of the installation. The shape of the curves indicates presence of two distinct zones with different heating rates. It was stated that it is expedient to set the heating period in the heat accumulators with a stationary bed within the first period which is characterized by a high heating rate. When calculating duration of the heating period, it is rational to take the value of the final material temperature 10‒15 % lower than the temperature of the heating air at the inlet. It was established that the coefficient of intercomponent heat exchange depends on the gas velocity, the velocity of the bed motion, the gas temperature at the input to the installation and the process duration. It was found that the curves of the dependence of the coefficients of intercomponent heat exchange on the process duration are described by a sigma function.Intensity of heat transfer for a moving layer in the investigated region was commensurable or somewhat higher than that for a stationary layer. It was shown that claydite is the preferred material for a granular packing. The time to onset of a stationary mode for a moving claydite layer was reduced by 2.4 times in comparison with gravel layer and by 2.2 times for a stationary layer

    Designing a System of Liquid Cooling for Industrial Microwave Installations

    Full text link
    The paper considers the issue on ensuring a thermal regime of the magnetron's anode unit by replacing an air-cooling system with the system of liquid cooling. It has been argued that a liquid cooling system is most suitable for magnetrons, for which currently an air-cooling system is implied, although they are not designed for a continuous operation in the structure of industrial microwave installations. Arranging the system of liquid cooling would makes it possible for a magnetron to work over long time without overheating and under favorable conditions, which rule out a possibility to clog the heat exchange surface with particles and dust, as well as the occurrence of overheating of the anode unit's surface. The basic element of the proposed system for liquid cooling is a cooling jacket, which represents an annular channel made from a heat-conducting material. Cooling jacket is mounted directly on the anode unit; in this case, a compression ratio of surfaces and the thickness of an air gap must ensure a minimum total thermal resistance. In order to determine heat transfer coefficients, an empirical dependence was established, which reflects the fact that when cooling the anode units the rational regimes are the viscous and transitional motion modes. The basic thermal characteristics of the cooling process have been defined, which include a coefficient of heat transfer, change in a heat-carrier temperature, the maximally permissible temperature at inlet. Calculations were carried out for two types of heat-carriers: water and a 54 % aqueous solution of ethylene glycol. A circuit for the system of liquid cooling has been proposed, which implies cooling from 1 to 6 magnetrons. Applying a given circuitry and choosing the rational estimated modes make it possible to solve the task on improving production efficiency, as well as reliability of microwave equipment

    Development of A Soil Regenerator with A Granular Nozzle for Greenhouses

    Full text link
    The results of the development of a regenerative-type heat exchange unit for greenhouses are presented. The creation of a soil regenerator is conditioned by energy and economic expediency. In spring in the daytime, the air in greenhouses is intensely heated by solar radiation, and at night it can be cooled below the allowable temperature. Heat accumulation during the day and using this heat at night will reduce the need for heaters even to their complete exclusion. The soil regenerator contains a dense layer of granular material that is blown through by the air from the inner space of a greenhouse. This solution makes it possible to intensify significantly the heat exchange. To determine the mean intercomponent heat exchange factor, the empirical dependence, taking into consideration the effect of duration of the heat exchange process, was obtained. We developed the procedure of thermal design calculation of a regenerator, using which the main geometric characteristics of the heat exchange area are determined. The results of the calculation of the soil regenerator for a greenhouse with the surface area of 18 m2 for the conditions of the warm continental climate were presented. The developed soil regenerator contains 5 channels that are 5.75 m long, filled with rubble. It was obtained that for the average solar radiation flow Qc=2,160 W and the duration of operation of the soil regenerator τΣ=6 hours, the accumulated heat at night can be consumed for 2.6 hours at the average ambient temperature t1=7 °C. As the ambient temperature rises, the time of regenerator operation will increase. The proposed soil regenerator is characterized by the design simplicity and its application will lead to an increase in energy costs to maintain the temperature mode in a greenhous
    corecore