22 research outputs found

    The RNA processing factors THRAP3 and BCLAF1 promote the DNA damage response through selective mRNA splicing and nuclear export

    Get PDF
    mRNA splicing and export plays a key role in the regulation of gene expression, with recent evidence suggesting an additional layer of regulation of gene expression and cellular function through the selective splicing and export of genes within specific pathways. Here we describe a role for the RNA processing factors THRAP3 and BCLAF1 in the regulation of the cellular DNA damage response (DDR) pathway, a key pathway involved in the maintenance of genomic stability and the prevention of oncogenic transformation. We show that loss of THRAP3 and/or BCLAF1 leads to sensitivity to DNA damaging agents, defective DNA repair and genomic instability. Additionally, we demonstrate that this phenotype can be at least partially explained by the role of THRAP3 and BCLAF1 in the selective mRNA splicing and export of transcripts encoding key DDR proteins, including the ATM kinase. Moreover, we show that cancer associated mutations within THRAP3 result in deregulated processing of THRAP3/BCLAF1-regulated transcripts and consequently defective DNA repair. Taken together, these results suggest that THRAP3 and BCLAF1 mutant tumors may be promising targets for DNA damaging chemotherapy

    Altered splicing and cytoplasmic levels of tRNA synthetases in SF3B1-mutant myelodysplastic syndromes as a therapeutic vulnerability

    Get PDF
    Abstract Myelodysplastic syndromes (MDS) are haematopoietic malignancies that are characterised by a heterogeneous clinical course. In recent years, sequencing efforts have uncovered recurrent somatic mutations within RNA splicing factors, including SF3B1, SRSF2, U2AF1 and ZRSR2. The most frequently mutated gene is SF3B1, mutated in 17% of MDS patients. While SF3B1 mutations and their effects on splicing have been well characterised, much remains to be explored about their more far-reaching effects on cellular homeostasis. Given that mRNA splicing and nuclear export are coordinated processes, we hypothesised that SF3B1 mutation might also affect export of certain mRNAs and that this may represent a targetable pathway for the treatment of SF3B1-mutant MDS. We used CRISPR/Cas9-genome editing to create isogenic cellular models. Comprehensive transcriptome and proteome profiling of these cells identified alterations in the splicing and export of components of the translational machinery, primarily tRNA synthetases, in response to the SF3B1 K700E mutation. While steady-state protein synthesis was unaffected, SF3B1 mutant cells were more sensitive to the clinically-relevant purine analogue, 8-azaguanine. In this study, we also demonstrated that 8-azaguanine affects splicing. Our results suggest that the simultaneous targeting of RNA metabolism and splicing by 8-azaguanine represents a therapeutic opportunity for SF3B1-mutant myelodysplastic syndromes

    BRCA1 binds TERRA RNA and suppresses R-Loop-based telomeric DNA damage

    No full text
    BRCA1-mediated resolution of R-loops has previously been described. Here the authors reveal a functional association of BRCA1 with TERRA RNA at telomeres, which develops in an R-loop-, and a cell cycle-dependent manner

    Brca1 deficiency exacerbates estrogen-induced dna damage and genomic instability

    No full text
    Germline mutations in BRCA1 predispose carriers to a high incidence of breast and ovarian cancers. BRCA1 functions to maintain genomic stability through critical roles in DNA repair, cell-cycle arrest, and transcriptional control. A major question has been why BRCA1 loss or mutation leads to tumors mainly in estrogen-regulated tissues, given that BRCA1 has essential functions in all cell types. Here, we report that estrogen and estrogen metabolites can cause DNA double-strand breaks (DSB) in estrogen receptora- negative breast cells and that BRCA1 is required to repair these DSBs to prevent metabolite-induced genomic instability.We found that BRCA1 also regulates estrogen metabolism and metabolite-mediated DNA damage by repressing the transcription of estrogen-metabolizing enzymes, such as CYP1A1, in breast cells. Finally, we used a knock-in human cell model with a heterozygous BRCA1 pathogenic mutation to show how BRCA1 haploinsufficiency affects these processes. Our findings provide pivotal new insights into why BRCA1 mutation drives the formation of tumors in estrogen-regulated tissues, despite the general role of BRCA1 in DNA repair in all cell type
    corecore