273 research outputs found

    Design and implementation of a preprocessing system for a sodium lidar

    Get PDF
    A preprocessing system, designed and constructed for use with the University of Illinois sodium lidar system, was developed to increase the altitude resolution and range of the lidar system and also to decrease the processing burden of the main lidar computer. The preprocessing system hardware and the software required to implement the system are described. Some preliminary results of an airborne sodium lidar experiment conducted with the preprocessing system installed in the sodium lidar are presented

    Daytime lidar measurements of tidal winds in the mesospheric sodium layer at Urbana, Illinois

    Get PDF
    For more than 15 years lidar systems have been used to study the chemistry and dynamics of the mesospheric sodium layer. Because the layer is an excellent tracer of atmospheric wave motions, sodium lidar has proven to be particularly useful for studying the influence of gravity waves and tides on mesospheric dynamics. These waves, which originate in the troposphere and stratosphere, propagate through the mesosphere and dissipate their energy near the mesopause making important contributions to the momentum and turbulence budget in this region of the atmosphere. Recently, the sodium lidar was modified for daytime operation so that wave phenomena and chemical effects could be monitored throughout the complete diurnal cycle. The results of continuous 24 hour lidar observations of the sodium layer structure are presented alond with measurement of the semidiurnal tidal winds

    Characterization of the Oscillometric Method for Measuring Indirect Blood Pressure

    Get PDF
    In this study, human subjects and dogs were used to determine the ability of the oscillometric method to indicate systolic and diastolic pressure. In the human studies, the auscultatory method was used as the reference. In the animal studies, directly recorded blood pressure was used as the reference. The ability of the sudden increase in cuff pressure oscillations during cuff deflation to indicate systolic pressure was examined and found to overestimate systolic pressure slightly in man, but more in animals. Systolic pressure was encountered when the cuff pressure oscillations were about one half of their maximum amplitude. However, in both man and animals the ratio was not constant; although the range was less in man than in animals. Diastolic pressure was encountered when cuff pressure oscillation amplitude was about 0.8 of the maximal amplitude. This ratio for diastolic pressure was not constant over a range of diastolic pressure. The range of variability was less for man than for the dog

    AutoRef: Towards Real-Robot Soccer Complete Automated Refereeing

    Full text link
    Preparing for robot soccer competitions by empirically evaluating different possible game strategies has been rather limited in leagues using real robots. Such limitation comes from factors related to the difficulty of extensively experimenting with games with real robots, such as their inevitable wear and tear and their usual limited number. RoboCup real robot teams have therefore developed simulation environments to enable experimentation. However, in order to run complete games in such simulation environments, an automated referee is needed. In this paper, we present AutoRef, as a contribution towards a complete automated referee for the RoboCup Small-Size League (SSL). We have developed and used AutoRef in an SSL simulation to run full games to evaluate different strategies, as we illustrate and show results. AutoRef is designed as a finite-state machine that transitions between the states of the game being either on or required to stop. AutoRef purposefully only uses the same visual and game information provided in SSL games with physical robots, which it uses to compute the features needed by the rules and to make decisions to transition between its states. Due to this real input to AutoRef, we have partially applied it to games of the physical robots. As AutoRef does not include all the rules of the real SSL games, we currently view it as an aid to human referees of SSL games, and discuss the challenges in automating several specific SSL game rules. AutoRef could be extended to other RoboCup real soccer leagues if a combined view of the game field, ball, and players is available.</p

    Synthesis of Non-uniformly Correlated Partially Coherent Sources Using a Deformable Mirror

    Get PDF
    The near real-time synthesis of a non-uniformly correlated partially coherent source using a low-actuator-count deformable mirror is demonstrated. The statistical optics theory underpinning the synthesis method is reviewed. The experimental results of a non-uniformly correlated source are presented and compared to theoretical predictions. A discussion on how deformable mirror characteristics such as actuator count and pitch affect source generation is also included

    Laser Time-of-Flight Mass Spectrometry for Future In Situ Planetary Missions

    Get PDF
    Laser desorption/ionization time-of-flight mass spectrometry (LD-TOF-MS) is a versatile, low-complexity instrument class that holds significant promise for future landed in situ planetary missions that emphasize compositional analysis of surface materials. Here we describe a 5kg-class instrument that is capable of detecting and analyzing a variety of analytes directly from rock or ice samples. Through laboratory studies of a suite of representative samples, we show that detection and analysis of key mineral composition, small organics, and particularly, higher molecular weight organics are well suited to this instrument design. A mass range exceeding 100,000 Da has recently been demonstrated. We describe recent efforts in instrument prototype development and future directions that will enhance our analytical capabilities targeting organic mixtures on primitive and icy bodies. We present results on a series of standards, simulated mixtures, and meteoritic samples

    Vertical Structure and Color of Jovian Latitudinal Cloud Bands during the Juno Era

    Get PDF
    The identity of the coloring agent(s) in Jupiter's atmosphere and the exact structure of Jupiter's uppermost cloud deck are yet to be conclusively understood. The Cr\`{e}me Br\^ul\'ee model of Jupiter's tropospheric clouds, originally proposed by Baines et al. (2014) and expanded upon by Sromovsky et al. (2017) and Baines et al. (2019), presumes that the chromophore measured by Carlson et al. (2016) is the singular coloring agent in Jupiter's troposphere. In this work, we test the validity of the Cr\`{e}me Br\^ul\'ee model of Jupiter's uppermost cloud deck using spectra measured during the Juno spacecraft's 5th^{\mathrm{th}} perijove pass in March 2017. These data were obtained as part of an international ground-based observing campaign in support of the Juno mission using the NMSU Acousto-optic Imaging Camera (NAIC) at the 3.5-m telescope at Apache Point Observatory in Sunspot, NM. We find that the Cr\`{e}me Br\^ul\'ee model cloud layering scheme can reproduce Jupiter's visible spectrum both with the Carlson et al. (2016) chromophore and with modifications to its imaginary index of refraction spectrum. While the Cr\`{e}me Br\^ul\'ee model provides reasonable results for regions of Jupiter's cloud bands such as the North Equatorial Belt and Equatorial Zone, we find that it is not a safe assumption for unique weather events, such as the 2016-2017 Southern Equatorial Belt outbreak that was captured by our measurements.Comment: 38 pages, 21 figures; Accepted for publication in AAS Planetary Science Journa

    Cryptococcus gattii in North American Pacific Northwest: whole-population genome analysis provides insights into species evolution and dispersal

    Get PDF
    The emergence of distinct populations of Cryptococcus gattii in the temperate North American Pacific Northwest (PNW) was surprising, as this species was previously thought to be confined to tropical and semitropical regions. Beyond a new habitat niche, the dominant emergent population displayed increased virulence and caused primary pulmonary disease, as opposed to the predominantly neurologic disease seen previously elsewhere. Whole-genome sequencing was performed on 118 C. gattii isolates, including the PNW subtypes and the global diversity of molecular type VGII, to better ascertain the natural source and genomic adaptations leading to the emergence of infection in the PNW. Overall, the VGII population was highly diverse, demonstrating large numbers of mutational and recombinational events; however, the three dominant subtypes from the PNW were of low diversity and were completely clonal. Although strains of VGII were found on at least five continents, all genetic subpopulations were represented or were most closely related to strains from South America. The phylogenetic data are consistent with multiple dispersal events from South America to North America and elsewhere. Numerous gene content differences were identified between the emergent clones and other VGII lineages, including genes potentially related to habitat adaptation, virulence, and pathology. Evidence was also found for possible gene introgression from Cryptococcus neoformans var. grubii that is rarely seen in global C. gattii but that was present in all PNW populations. These findings provide greater understanding of C. gattii evolution in North America and support extensive evolution in, and dispersal from, South America. Importance: Cryptococcus gattii emerged in the temperate North American Pacific Northwest (PNW) in the late 1990s. Beyond a new environmental niche, these emergent populations displayed increased virulence and resulted in a different pattern of clinical disease. In particular, severe pulmonary infections predominated in contrast to presentation with neurologic disease as seen previously elsewhere. We employed population-level whole-genome sequencing and analysis to explore the genetic relationships and gene content of the PNW C. gattii populations. We provide evidence that the PNW strains originated from South America and identified numerous genes potentially related to habitat adaptation, virulence expression, and clinical presentation. Characterization of these genetic features may lead to improved diagnostics and therapies for such fungal infections. The data indicate that there were multiple recent introductions of C. gattii into the PNW. Public health vigilance is warranted for emergence in regions where C. gattii is not thought to be endemic

    Single Molecule Conformational Memory Extraction: P5ab RNA Hairpin

    Get PDF
    Extracting kinetic models from single molecule data is an important route to mechanistic insight in biophysics, chemistry, and biology. Data collected from force spectroscopy can probe discrete hops of a single molecule between different conformational states. Model extraction from such data is a challenging inverse problem because single molecule data are noisy and rich in structure. Standard modeling methods normally assume (i) a prespecified number of discrete states and (ii) that transitions between states are Markovian. The data set is then fit to this predetermined model to find a handful of rates describing the transitions between states. We show that it is unnecessary to assume either (i) or (ii) and focus our analysis on the zipping/unzipping transitions of an RNA hairpin. The key is in starting with a very broad class of non-Markov models in order to let the data guide us toward the best model from this very broad class. Our method suggests that there exists a folding intermediate for the P5ab RNA hairpin whose zipping/unzipping is monitored by force spectroscopy experiments. This intermediate would not have been resolved if a Markov model had been assumed from the onset. We compare the merits of our method with those of others
    • …
    corecore