491 research outputs found

    Matching times of leading and following suggest cooperation through direct reciprocity during V-formation flight in ibis

    Get PDF
    One conspicuous feature of several larger bird species is their annual migration in V-shaped or echelon formation. When birds are flying in these formations, energy savings can be achieved by using the aerodynamic up-wash produced by the preceding bird. As the leading bird in a formation cannot profit from this up-wash, a social dilemma arises around the question of who is going to fly in front? To investigate how this dilemma is solved, we studied the flight behavior of a flock of juvenile Northern bald ibis (Geronticus eremita) during a human-guided autumn migration. We could show that the amount of time a bird is leading a formation is strongly correlated with the time it can itself profit from flying in the wake of another bird. On the dyadic level, birds match the time they spend in the wake of each other by frequent pairwise switches of the leading position. Taken together, these results suggest that bald ibis cooperate by directly taking turns in leading a formation. On the proximate level, we propose that it is mainly the high number of iterations and the immediacy of reciprocation opportunities that favor direct reciprocation. Finally, we found evidence that the animals' propensity to reciprocate in leading has a substantial influence on the size and cohesion of the flight formations

    Cortical circuit alterations precede motor impairments in Huntington's disease mice

    Get PDF
    Huntington's disease (HD) is a devastating hereditary movement disorder, characterized by degeneration of neurons in the striatum and cortex. Studies in human patients and mouse HD models suggest that disturbances of neuronal function in the neocortex play an important role in disease onset and progression. However, the precise nature and time course of cortical alterations in HD have remained elusive. Here, we use chronic in vivo two-photon calcium imaging to longitudinally monitor the activity of identified single neurons in layer 2/3 of the primary motor cortex in awake, behaving R6/2 transgenic HD mice and wildtype littermates. R6/2 mice show age-dependent changes in cortical network function, with an increase in activity that affects a large fraction of cells and occurs rather abruptly within one week, preceeding the onset of motor defects. Furthermore, quantitative proteomics demonstrate a pronounced downregulation of synaptic proteins in the cortex, and histological analyses in R6/2 mice and human HD autopsy cases reveal a reduction in perisomatic inhibitory synaptic contacts on layer 2/3 pyramidal cells. Taken together, our study provides a time-resolved description of cortical network dysfunction in behaving HD mice and points to disturbed excitation/inhibition balance as an important pathomechanism in HD

    Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight

    Get PDF
    Many species travel in highly organized groups. The most quoted function of these configurations is to reduce energy expenditure and enhance locomotor performance of individuals in the assemblage. The distinctive V formation of bird flocks has long intrigued researchers and continues to attract both scientific and popular attention. The well-held belief is that such aggregations give an energetic benefit for those birds that are flying behind and to one side of another bird through using the regions of upwash generated by the wings of the preceding bird4,7,9,10,11, although a definitive account of the aerodynamic implications of these formations has remained elusive. Here we show that individuals of northern bald ibises (Geronticus eremita) flying in a V flock position themselves in aerodynamically optimum positions, in that they agree with theoretical aerodynamic predictions. Furthermore, we demonstrate that birds show wingtip path coherence when flying in V positions, flapping spatially in phase and thus enabling upwash capture to be maximized throughout the entire flap cycle. In contrast, when birds fly immediately behind another bird—in a streamwise position—there is no wingtip path coherence; the wing-beats are in spatial anti-phase. This could potentially reduce the adverse effects of downwash for the following bird. These aerodynamic accomplishments were previously not thought possible for birds because of the complex flight dynamics and sensory feedback that would be required to perform such a feat. We conclude that the intricate mechanisms involved in V formation flight indicate awareness of the spatial wake structures of nearby flock-mates, and remarkable ability either to sense or predict it. We suggest that birds in V formation have phasing strategies to cope with the dynamic wakes produced by flapping wings

    Cardiac Imaging Using Clinical 1.5 T MRI Scanners in a Murine Ischemia/Reperfusion Model

    Get PDF
    To perform cardiac imaging in mice without having to invest in expensive dedicated equipment, we adapted a clinical 1.5 Tesla (T) magnetic resonance imaging (MRI) scanner for use in a murine ischemia/reperfusion model. Phase-sensitive inversion recovery (PSIR) sequence facilitated the determination of infarct sizes in vivo by late gadolinium enhancement. Results were compared to histological infarct areas in mice after ischemia/reperfusion procedure with a good correlation (r = 0.807, P < .001). In addition, fractional area change (FAC) was assessed with single slice cine MRI and was matched to infarct size (r = −0.837) and fractional shortening (FS) measured with echocardiography (r = 0.860); both P < .001. Here, we demonstrate the use of clinical 1.5 MRI scanners as a feasible method for basic phenotyping in mice. These widely available scanners are capable of investigating in vivo infarct dimensions as well as assessment of cardiac functional parameters in mice with reasonable throughput

    High salt reduces the activation of IL-4- and IL-13-stimulated macrophages

    Get PDF
    A high intake of dietary salt (NaCl) has been implicated in the development of hypertension, chronic inflammation, and autoimmune diseases. We have recently shown that salt has a proinflammatory effect and boosts the activation of Th17 cells and the activation of classical, LPS-induced macrophages (M1). Here, we examined how the activation of alternative (M2) macrophages is affected by salt. In stark contrast to Th17 cells and M1 macrophages, high salt blunted the alternative activation of BM-derived mouse macrophages stimulated with IL-4 and IL-13, M(IL-4+IL-13) macrophages. Salt-induced reduction of M(IL-4+IL-13) activation was not associated with increased polarization toward a proinflammatory M1 phenotype. In vitro, high salt decreased the ability of M(IL-4+IL-13) macrophages to suppress effector T cell proliferation. Moreover, mice fed a high salt diet exhibited reduced M2 activation following chitin injection and delayed wound healing compared with control animals. We further identified a high salt-induced reduction in glycolysis and mitochondrial metabolic output, coupled with blunted AKT and mTOR signaling, which indicates a mechanism by which NaCl inhibits full M2 macrophage activation. Collectively, this study provides evidence that high salt reduces noninflammatory innate immune cell activation and may thus lead to an overall imbalance in immune homeostasis

    The Maintenance of Traditions in Marmosets: Individual Habit, Not Social Conformity? A Field Experiment

    Get PDF
    Social conformity is a cornerstone of human culture because it accelerates and maintains the spread of behaviour within a group. Few empirical studies have investigated the role of social conformity in the maintenance of traditions despite an increasing body of literature on the formation of behavioural patterns in non-human animals. The current report presents a field experiment with free-ranging marmosets (Callithrix jacchus) which investigated whether social conformity is necessary for the maintenance of behavioural patterns within groups or whether individual effects such as habit formation would suffice.Using a two-action apparatus, we established alternative behavioural patterns in six family groups composed of 36 individuals. These groups experienced only one technique during a training phase and were thereafter tested with two techniques available. The monkeys reliably maintained the trained method over a period of three weeks, despite discovering the alternative technique. Three additional groups were given the same number of sessions, but those 21 individuals could freely choose the method to obtain a reward. In these control groups, an overall bias towards one of the two methods was observed, but animals with a different preference did not adjust towards the group norm. Thirteen of the fifteen animals that discovered both techniques remained with the action with which they were initially successful, independent of the group preference and the type of action (Binomial test: exp. proportion: 0.5, p<0.01).The results indicate that the maintenance of behavioural patterns within groups 1) could be explained by the first rewarded manipulation and subsequent habit formation and 2) do not require social conformity as a mechanism. After an initial spread of a behaviour throughout a group, this mechanism may lead to a superficial appearance of conformity without the involvement of such a socially and cognitively complex mechanism. This is the first time that such an experiment has been conducted with free-ranging primates

    Systematic assessment of the replicability and generalizability of preclinical findings: Impact of protocol harmonization across laboratory sites.

    Get PDF
    The influence of protocol standardization between laboratories on their replicability of preclinical results has not been addressed in a systematic way. While standardization is considered good research practice as a means to control for undesired external noise (i.e., highly variable results), some reports suggest that standardized protocols may lead to idiosyncratic results, thus undermining replicability. Through the EQIPD consortium, a multi-lab collaboration between academic and industry partners, we aimed to elucidate parameters that impact the replicability of preclinical animal studies. To this end, 3 experimental protocols were implemented across 7 laboratories. The replicability of results was determined using the distance travelled in an open field after administration of pharmacological compounds known to modulate locomotor activity (MK-801, diazepam, and clozapine) in C57BL/6 mice as a worked example. The goal was to determine whether harmonization of study protocols across laboratories improves the replicability of the results and whether replicability can be further improved by systematic variation (heterogenization) of 2 environmental factors (time of testing and light intensity during testing) within laboratories. Protocols were tested in 3 consecutive stages and differed in the extent of harmonization across laboratories and standardization within laboratories: stage 1, minimally aligned across sites (local protocol); stage 2, fully aligned across sites (harmonized protocol) with and without systematic variation (standardized and heterogenized cohort); and stage 3, fully aligned across sites (standardized protocol) with a different compound. All protocols resulted in consistent treatment effects across laboratories, which were also replicated within laboratories across the different stages. Harmonization of protocols across laboratories reduced between-lab variability substantially compared to each lab using their local protocol. In contrast, the environmental factors chosen to introduce systematic variation within laboratories did not affect the behavioral outcome. Therefore, heterogenization did not reduce between-lab variability further compared to the harmonization of the standardized protocol. Altogether, these findings demonstrate that subtle variations between lab-specific study protocols may introduce variation across independent replicate studies even after protocol harmonization and that systematic heterogenization of environmental factors may not be sufficient to account for such between-lab variation. Differences in replicability of results within and between laboratories highlight the ubiquity of study-specific variation due to between-lab variability, the importance of transparent and fine-grained reporting of methodologies and research protocols, and the importance of independent study replication

    Social network analysis shows direct evidence for social transmission of tool use in wild chimpanzees

    Get PDF
    The authors are grateful to the Royal Zoological Society of Scotland for providing core funding for the Budongo Conservation Field Station. The fieldwork of CH was funded by the Leverhulme Trust, the Lucie Burgers Stichting, and the British Academy. TP was funded by the Canadian Research Chair in Continental Ecosystem Ecology, and received computational support from the Theoretical Ecosystem Ecology group at UQAR. The research leading to these results has received funding from the People Programme (Marie Curie Actions) and from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007–2013) REA grant agreement n°329197 awarded to TG, ERC grant agreement n° 283871 awarded to KZ. WH was funded by a BBSRC grant (BB/I007997/1).Social network analysis methods have made it possible to test whether novel behaviors in animals spread through individual or social learning. To date, however, social network analysis of wild populations has been limited to static models that cannot precisely reflect the dynamics of learning, for instance, the impact of multiple observations across time. Here, we present a novel dynamic version of network analysis that is capable of capturing temporal aspects of acquisition-that is, how successive observations by an individual influence its acquisition of the novel behavior. We apply this model to studying the spread of two novel tool-use variants, "moss-sponging'' and "leaf-sponge re-use,'' in the Sonso chimpanzee community of Budongo Forest, Uganda. Chimpanzees are widely considered the most "cultural'' of all animal species, with 39 behaviors suspected as socially acquired, most of them in the domain of tool-use. The cultural hypothesis is supported by experimental data from captive chimpanzees and a range of observational data. However, for wild groups, there is still no direct experimental evidence for social learning, nor has there been any direct observation of social diffusion of behavioral innovations. Here, we tested both a static and a dynamic network model and found strong evidence that diffusion patterns of moss-sponging, but not leaf-sponge re-use, were significantly better explained by social than individual learning. The most conservative estimate of social transmission accounted for 85% of observed events, with an estimated 15-fold increase in learning rate for each time a novice observed an informed individual moss-sponging. We conclude that group-specific behavioral variants in wild chimpanzees can be socially learned, adding to the evidence that this prerequisite for culture originated in a common ancestor of great apes and humans, long before the advent of modern humans.Publisher PDFPeer reviewe

    Aldosterone and the mineralocorticoid receptor in renal injury: A potential therapeutic target in feline chronic kidney disease

    Get PDF
    There is a growing body of experimental and clinical evidence supporting mineralocorticoid receptor (MR) activation as a powerful mediator of renal damage in laboratory animals and humans. Multiple pathophysiological mechanisms are proposed, with the strongest evidence supporting aldosterone‐induced vasculopathy, exacerbation of oxidative stress and inflammation, and increased growth factor signalling promoting fibroblast proliferation and deranged extracellular matrix homeostasis. Further involvement of the MR is supported by extensive animal model experiments where MR antagonists (such as spironolactone and eplerenone) abrogate renal injury, including ischaemia‐induced damage. Additionally, clinical trials have shown MR antagonists to be beneficial in human chronic kidney disease (CKD) in terms of reducing proteinuria and cardiovascular events, though current studies have not evaluated primary end points which allow conclusions to made about whether MR antagonists reduce mortality or slow CKD progression. Although differences between human and feline CKD exist, feline CKD shares many characteristics with human disease including tubulointerstitial fibrosis. This review evaluates the evidence for the role of the MR in renal injury and summarizes the literature concerning aldosterone in feline CKD. MR antagonists may represent a promising therapeutic strategy in feline CKD
    corecore