444 research outputs found

    Notch Filtering Suitable for Real Time Removal of Power Line Interference

    Get PDF
    This paper presents a high performance notch filtering for real time suppression of power line interference in a general signal. The disturbing signal is suppressed using an optimal notch FIR filter with tunable notch frequency. The tuning of the filter preserves its selectivity, most importantly the specified attenuation at the notch frequency. One example and two Matlab functions demonstrate the performance, robustness and usefulness of the proposed procedure for the design and tuning of optimal notch FIR filters suitable in the real time notch filtering

    BASEL III: Long-term impact on economic performance and fluctuations

    Get PDF
    We assess the long-term economic impact of the new regulatory standards (the Basel III reform), answering the following questions. (1) What is the impact of the reform on long-term economic performance? (2) What is the impact of the reform on economic fluctuations? (3) What is the impact of the adoption of countercyclical capital buffers on economic fluctuations? The main results are the following. (1) Each percentage point increase in the capital ratio causes a median 0.09 percent decline in the level of steady state output, relative to the baseline. The impact of the new liquidity regulation is of a similar order of magnitude, at 0.08 percent. This paper does not estimate the benefits of the new regulation in terms of reduced frequency and severity of financial crisis, analysed in Basel Committee on Banking Supervision (BCBS, 2010b). (2) The reform should dampen output volatility; the magnitude of the effect is heterogeneous across models; the median effect is modest. (3) The adoption of countercyclical capital buffers could have a more sizeable dampening effect on output volatility. These conclusions are fully consistent with those of the reports by the Long-term Economic Impact group (BCBS, 2010b) and Macro Assessment Group (MAG, 2010b).Basel III, countercyclical capital buffers, financial (in)stability, procyclicality, macroprudential policy.

    Evaluation of Computing Symmetrical Zolotarev Polynomials of the First Kind

    Get PDF
    This report summarize and compares with each other various methods for computing the symmetrical Zolotarev Polynomial of the first kind and its spectrum. Suitable criteria are suggested for the comparison. The best numerical stability shows the method employing Chebyshev polynomial recurrence. In case of the polynomial spectrum computation the best method is the one using the difference backward recursion introduced by M. Vlcek. Both methods are able to generate the polynomial of high degree up to, at least, 2000, using 32-bit IEEE floating point arithmetics

    Hole Hopping Across a Protein-Protein Interface.

    Get PDF
    We have investigated photoinduced hole hopping in a Pseudomonas aeruginosa azurin mutant Re126WWCuI, where two adjacent tryptophan residues (W124 and W122) are inserted between the CuI center and a Re photosensitizer coordinated to a H126 imidazole (Re = ReI(H126)(CO)3(dmp)+, dmp = 4,7-dimethyl-1,10-phenanthroline). Optical excitation of this mutant in aqueous media (//(CuII)' back ET that occurs over 12 Å, in contrast to the 23 Å, 120 us step in Re126WWCuI. Importantly, dimerization makes Re126FWCuI photoreactive and, in the case of {Re126WWCuI}2, channels the photoproduced "hole" to the molecule that was not initially photoexcited, thereby shortening the lifetime of ReI(H126)(CO)3(dmp‱-)//CuII. Whereas two adjacent W124 and W122 indoles dramatically enhance CuI->*Re intramolecular multistep ET, the tryptophan quadruplex in {Re126WWCuI}2 does not accelerate intermolecular electron transport; instead, it acts as a hole storage and crossover unit between inter- and intramolecular ET pathways. Irradiation of {Re126WWCuII}2 or {Re126FWCuII}2 also triggers intermolecular *Re////(W122‱+)' intermolecular charge recombination. Our findings shed light on the factors that control interfacial hole/electron hopping in protein complexes and on the role of aromatic amino acids in accelerating long-range electron transport

    The effect of changing the magnetic field strength on HiPIMS deposition rates

    Get PDF
    The marked difference in behaviour between HiPIMS and conventional dc or pulsed-dc magnetron sputtering discharges with changing magnetic field strengths is demonstrated through measurements of deposition rate. To provide a comparison between techniques the same circular magnetron was operated in the three excitation modes at a fixed average power of 680 W and a pressure of 0.54 Pa in the non-reactive sputtering of titanium. The total magnetic field strength B at the cathode surface in the middle of the racetrack was varied from 195 to 380 G. DC and pulsed-dc discharges show the expected behaviour that deposition rates fall with decreasing B (here by ~25–40%), however the opposite trend is observed in HiPIMS with deposition rates rising by a factor of 2 over the same decrease in B. These observations are understood from the stand point of the different composition and transport processes of the depositing metal flux between the techniques. In HiPIMS, this flux is largely ionic and slow post-ionized sputtered particles are subject to strong back attraction to the target by a retarding plasma potential structure ahead of them. The height of this potential barrier is known to increase with increasing B. From a simple phenomenological model of the sputtered particles fluxes, and using the measured deposition rates from the different techniques as inputs, the combined probabilities of ionization, α, and back attraction, ÎČ, of the metal species in HiPIMS has been calculated. There is a clear fall in αÎČ (from ~0.9 to ~0.7) with decreasing B-field strengths, we argue primarily due to a weakening of electrostatic ion back attraction, so leading to higher deposition rates. The results indicate that careful design of magnetron field strengths should be considered to optimise HiPIMS deposition rates

    Photophysical Heavy-Atom Effect in Iodinated Metallocorroles: Spin-Orbit Coupling and Density of States

    Get PDF
    This work was supported by COST Actions CM1202 and CM1405 Actions, the Czech Science Foundation (GAČR) grant 17-011375, and the Swiss NSF via the NCCR:MUST, contracts n° 200021_137717 and IZK0Z2_150425

    A selective p53 activator and anticancer agent to improve colorectal cancer therapy

    Get PDF
    Impairment of the p53 pathway is a critical event in cancer. Therefore, reestablishing p53 activity has become one of the most appealing anticancer therapeutic strategies. Here, we disclose the p53-activating anticancer drug (3S)-6,7-bis(hydroxymethyl)-5-methyl-3-phenyl-1H,3H-pyrrolo[1,2-c]thiazole (MANIO). MANIO demonstrates a notable selectivity to the p53 pathway, activating wild-type (WT)p53 and restoring WT-like function to mutant (mut)p53 in human cancer cells. MANIO directly binds to the WT/mutp53 DNA-binding domain, enhancing the protein thermal stability, DNA-binding ability, and transcriptional activity. The high efficacy of MANIO as an anticancer agent toward cancers harboring WT/mutp53 is further demonstrated in patient-derived cells and xenograft mouse models of colorectal cancer (CRC), with no signs of undesirable side effects. MANIO synergizes with conventional chemotherapeutic drugs, and in vitro and in vivo studies predict its adequate drug-likeness and pharmacokinetic properties for a clinical candidate. As a single agent or in combination, MANIO will advance anticancer-targeted therapy, particularly benefiting CRC patients harboring distinct p53 status.We thank PT national funds (FCT/MCTES , Fundação para a CiĂȘncia e a Tecnologia , and MinistĂ©rio da CiĂȘncia, Tecnologia e Ensino Superior ) through grants UIDB/50006/2020 , UID/BIO/04469/2019 , UIDB/04539/2020 , and UIDP/04539/2020 ( CIBB ); BioTecNorte operation ( NORTE-01-0145-FEDER-000004 ) and Porto Neurosciences and Neurologic Disease Research Initiative at I3S ( Norte-01-0145-FEDER-000008 ) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte ; Masaryk University ( Project MUNI/A/1127/2019 ) and Ministry of Education, Youth and Sports of the Czech Republic (project nos. LQ1605 and LM2018125 ); FCT financial support through the fellowships SFRH/BD/119144/2016 (H.R.) and SFRH/BD/117949/2016 (L.R.); Fondazione AIRC ( IG#18985 , A.I.); and the Programa Operacional Potencial Humano (POCH), specifically the BiotechHealth Programme (Doctoral Programme on Cellular and Molecular Biotechnology Applied to Health Sciences , PD/00016/2012 ). We thank Dario Rizzotto for assistance in preparing the libraries for RNA sequencing. Funding: This work was supported by PT National Funds (FCT/MCTES, Fundação para a CiĂȘncia e Tecnologia , and MinistĂ©rio da CiĂȘncia, Tecnologia e Ensino Superior ) via the projects UIDB/50006/2020 ( LAQV/REQUIMTE ), UIDB/00313/2020 , and UIDP/00313/2020 , co-funded by COMPETE2020-UE

    Two Tryptophans Are Better Than One in Accelerating Electron Flow through a Protein

    Get PDF
    We have constructed and structurally characterized a <i>Pseudomonas aeruginosa</i> azurin mutant <b>Re126WWCu<sup>I</sup></b>, where two adjacent tryptophan residues (W124 and W122, indole separation 3.6–4.1 Å) are inserted between the Cu<sup>I</sup> center and a Re photosensitizer coordinated to the imidazole of H126 (Re<sup>I</sup>(H126)­(CO)<sub>3</sub>(4,7-dimethyl-1,10-phenanthroline)<sup>+</sup>). Cu<sup>I</sup> oxidation by the photoexcited Re label (*Re) 22.9 Å away proceeds with a ∌70 ns time constant, similar to that of a single-tryptophan mutant (∌40 ns) with a 19.4 Å Re–Cu distance. Time-resolved spectroscopy (luminescence, visible and IR absorption) revealed two rapid reversible electron transfer steps, W124 → *Re (400–475 ps, <i>K</i><sub>1</sub> ≅ 3.5–4) and W122 → W124<sup>‱+</sup> (7–9 ns, <i>K</i><sub>2</sub> ≅ 0.55–0.75), followed by a rate-determining (70–90 ns) Cu<sup>I</sup> oxidation by W122<sup>‱+</sup> ca. 11 Å away. The photocycle is completed by 120 ÎŒs recombination. No photochemical Cu<sup>I</sup> oxidation was observed in <b>Re126FWCu<sup>I</sup></b>, whereas in <b>Re126WFCu<sup>I</sup></b>, the photocycle is restricted to the ReH126W124 unit and Cu<sup>I</sup> remains isolated. QM/MM/MD simulations of <b>Re126WWCu<sup>I</sup></b> indicate that indole solvation changes through the hopping process and W124 → *Re electron transfer is accompanied by water fluctuations that tighten W124 solvation. Our finding that multistep tunneling (hopping) confers a ∌9000-fold advantage over single-step tunneling in the double-tryptophan protein supports the proposal that hole-hopping through tryptophan/tyrosine chains protects enzymes from oxidative damage
    • 

    corecore