259 research outputs found

    Synthetic synchrotron emission maps from MHD models for the jet of M87

    Full text link
    We present self-consistent global, steady-state MHD models and synthetic optically thin synchrotron emission maps for the jet of M87. The model consist of two distinct zones: an inner relativistic outflow, which we identify with the observed jet, and an outer cold disk-wind. While the former does not self-collimate efficiently due to its high effective inertia, the latter fulfills all the conditions for efficient collimation by the magneto-centrifugal mechanism. Given the right balance between the effective inertia of the inner flow and the collimation efficiency of the outer disk wind, the relativistic flow is magnetically confined into a well collimated beam and matches the measurements of the opening angle of M87 over several orders of magnitude in spatial extent. The synthetic synchrotron maps reproduce the morphological structure of the jet of M87, i.e. center-bright profiles near the core and limb-bright profiles away from the core. At the same time, they also show a local increase of brightness at some distance along the axis associated to a recollimation shock in the MHD model. Its location coincides with the position of the optical knot HST-1. In addition our best fitting model is consistent with a number of observational constraints such as the magnetic field in the knot HST-1, and the jet-to-counterjet brightness ratio.Comment: 9 pages, 9 figures, accepted by Ap

    Magnetic acceleration of ultra-relativistic jets in gamma-ray burst sources

    Full text link
    We present a relativistic-MHD numerical study of axisymmetric, magnetically driven jets with parameters applicable to gamma-ray burst (GRB) flows. We also present analytic expressions for the asymptotic jet shape and other flow parameters that agree very well with the numerical results. All current-carrying outflows exhibit self-collimation and consequent acceleration near the rotation axis, but unconfined outflows lose causal connectivity across the jet and therefore do not collimate or accelerate efficiently in their outer regions. Magnetically accelerated jets confined by an external pressure that varies with distance with a power-law index < 2 assume a paraboloidal shape and have an acceleration efficiency > 50%. They attain Lorentz factors > 30 on scales 10^9-3x10^10 cm, consistent with the possibility that short/hard GRB jets are accelerated on scales where they can be confined by moderately relativistic winds from accretion discs, and > 100 on scales 10^10-10^12 cm, consistent with the possibility that long/soft GRB jets are accelerated within the envelopes of collapsing massive stars. We also find that the Lorentz factor of a magnetically accelerated jet is approximately inversely proportional to the opening half-angle of the poloidal streamlines. This implies that the gamma-ray emitting components of GRB outflows are very narrow, with a half-angle < 1 degree in regions where the Lorentz factor exceeds 100, and that the afterglow light curves of these components would either exhibit a very early jet break or show no jet break at all.Comment: submitted to MNRAS, 32 pages, 23 figure

    Counter-rotation in relativistic magnetohydrodynamic jets

    Full text link
    Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. (2012) have shown that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Signatures of motions transverse to the jet axis and in opposite directions have recently been measured in M87 (Meyer et al. 2013). One possible interpretation of this motion is the one of counter rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases : if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or, if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of relativistic MHD jet simulation.Comment: Accepted for publication in ApJ

    Magnetic collimation of the relativistic jet in M87

    Full text link
    We apply a two-zone MHD model to the jet of M87. The model consists of an inner relativistic outflow, which is surrounded by a non-relativistic outer disk-wind. The outer disk-wind collimates very well through magnetic self-collimation and confines the inner relativistic jet into a narrow region around the rotation axis. Further, we show by example, that such models reproduce very accurately the observed opening angle of the M87 jet over a large range from the kiloparsec scale down to the sub-parsec scale.Comment: 4 pages, 2 figures, accepted by A&A Letter

    Stochastic model of optical variability of BL Lacertae

    Full text link
    We use optical photometric and polarimetric data of BL Lacertae that cover a period of 22 years to study the variability of the source. The long-term observations are employed for establishing parameters of a stochastic model consisting of the radiation from a steady polarized source and a number of variable components with different polarization parameters, proposed by Hagen-Thorn et al. earlier. We infer parameters of the model from the observations using numerical simulations based on a Monte Carlo method, with values of each model parameter selected from a Gaussian distribution. We determine the best set of model parameters by comparing model distributions to the observational ones using the chi-square criterion. We show that the observed photometric and polarimetric variability can be explained within a model with a steady source of high polarization, ~40%, and with direction of polarization parallel to the parsec scale jet, along with 10+-5 sources of variable polarization.Comment: 4 pages, 10 figures, published by Astronomy and Astrophysics; v2: typos correcte

    Velocity asymmetries in YSO jets: Intrinsic and extrinsic mechanisms

    Get PDF
    It is a well established fact that some YSO jets (e.g. RW Aur) display different propagation speeds between their blue and red shifted parts, a feature possibly associated with the central engine or the environment in which the jet propagates. In order to understand the origin of asymmetric YSO jet velocities, we investigate the efficiency of two candidate mechanisms, one based on the intrinsic properties of the system and one based on the role of the external medium. In particular, a parallel or anti-parallel configuration between the protostellar magnetosphere and the disk magnetic field is considered and the resulting dynamics are examined both in an ideal and a resistive magneto-hydrodynamical (MHD) regime. Moreover, we explore the effects of a potential difference in the pressure of the environment, as a consequence of the non-uniform density distribution of molecular clouds. Ideal and resistive axisymmetric numerical simulations are carried out for a variety of models, all of which are based on a combination of two analytical solutions, a disk wind and a stellar outflow. We find that jet velocity asymmetries can indeed occur both when multipolar magnetic moments are present in the star-disk system as well as when non-uniform environments are considered. The latter case is an external mechanism that can easily explain the large time scale of the phenomenon, whereas the former one naturally relates it to the YSO intrinsic properties. [abridged]Comment: accepted for publication in A&

    Young stellar object jet models: From theory to synthetic observations

    Get PDF
    Astronomical observations, analytical solutions and numerical simulations have provided the building blocks to formulate the current theory of young stellar object jets. Although each approach has made great progress independently, it is only during the last decade that significant efforts are being made to bring the separate pieces together. Building on previous work that combined analytical solutions and numerical simulations, we apply a sophisticated cooling function to incorporate optically thin energy losses in the dynamics. On the one hand, this allows a self-consistent treatment of the jet evolution and on the other, it provides the necessary data to generate synthetic emission maps. Firstly, analytical disk and stellar outflow solutions are properly combined to initialize numerical two-component jet models inside the computational box. Secondly, magneto-hydrodynamical simulations are performed in 2.5D, following properly the ionization and recombination of a maximum of 2929 ions. Finally, the outputs are post-processed to produce artificial observational data. The first two-component jet simulations, based on analytical models, that include ionization and optically thin radiation losses demonstrate promising results for modeling specific young stellar object outflows. The generation of synthetic emission maps provides the link to observations, as well as the necessary feedback for the further improvement of the available models.Comment: accepted for publication A&A, 20 pages, 11 figure

    Magnetic acceleration of relativistic AGN jets

    Get PDF
    We present numerical simulations of axisymmetric, magnetically driven relativistic jets. To eliminate the dissipative effects induced by a free boundary with an ambient medium we assume that the flow is confined by a rigid wall of a prescribed shape, which we take to be zraz\propto r^a (in cylindrical coordinates, with aa ranging from 1 to 3). The outflows are initially cold, sub-Alfv\'enic and Poynting flux-dominated, with a total--to--rest-mass energy flux ratio μ15\mu \sim 15. We find that in all cases they converge to a steady state characterized by a spatially extended acceleration region. The acceleration process is very efficient: on the outermost scale of the simulation as much as 77\sim 77% of the Poynting flux has been converted into kinetic energy flux, and the terminal Lorentz factor approaches its maximum possible value (Γμ\Gamma_\infty \simeq \mu). We also find a high collimation efficiency: all our simulated jets develop a cylindrical core. We argue that this could be the rule for current-carrying outflows that start with a low initial Lorentz factor (Γ01\Gamma_0 \sim 1). Our conclusions on the high acceleration and collimation efficiencies are not sensitive to the particular shape of the confining boundary or to the details of the injected current distribution, and they are qualitatively consistent with the semi-analytic self-similar solutions derived by Vlahakis & K\"onigl. We apply our results to the interpretation of relativistic jets in AGNs: we argue that they naturally account for the spatially extended accelerations inferred in these sources (\Gamma_\infty \ga 10 attained on radial scales R\ga 10^{17} {\rm cm}) and are consistent with the transition to the matter-dominated regime occurring already at R\ga 10^{16} {\rm cm}.Comment: Accepted for publication in MNRAS. Contains new results and additional discussion that addresses comments of referee and other contact

    Dissipationless Disk Accretion

    Full text link
    We consider disk accretion resulting purely from the loss of angular momentum due to the outflow of plasma from a magnetized disk. In this limiting case, the dissipation due to the viscosity and finite electrical conductivity of the plasma can be neglected. We have obtained self-consistent, self-similar solutions for dissipationless disk accretion. Such accretion may result in the formation of objects whose bolometric luminosities are lower than the flux of kinetic energy in the ejected material.Comment: 17 pages, 6 figures, published in Astronomy Reports, Vol.49, No.1, 2005, p.57 (submitted September 13, 2003). Unfortunately, we did not upload the paper to astro-ph before, but since the topic is now of interest we feel that the paper would benefit the communit

    Relativistic spine jets from Schwarzschild black holes: "Application to AGN radioloud sources"

    Full text link
    The two types of Fanaroff-Riley radio loud galaxies, FRI and FRII, exhibit strong jets but with different properties. These differences may be associated to the central engine and/or the external medium. Aims: The AGN classification FRI and FRII can be linked to the rate of electromagnetic Poynting flux extraction from the inner corona of the central engine by the jet. The collimation results from the distribution of the total electromagnetic energy across the jet, as compared to the corresponding distribution of the thermal and gravitational energies. We use exact solutions of the fully relativistic magnetohydrodynamical (GRMHD) equations obtained by a nonlinear separation of the variables to study outflows from a Schwarzschild black hole corona. A strong correlation is found between the jet features and the energetic distribution of the plasma of the inner corona which may be related to the efficiency of the magnetic rotator. It is shown that observations of FRI and FRII jets may be partially constrained by our model for spine jets. The deceleration observed in FRI jets may be associated with a low magnetic efficiency of the central magnetic rotator and an important thermal confinement by the hot surrounding medium. Conversely, the strongly collimated and accelerated FRII outflows may be self collimated by their own magnetic field because of the high efficiency of the central magnetic rotator.Comment: Accepted for publication in the A&
    corecore