10 research outputs found

    Time to Kill and Time to Heal: The Multifaceted Role of Lactoferrin and Lactoferricin in Host Defense

    No full text
    Lactoferrin is an iron-binding glycoprotein present in most human exocrine fluids, particularly breast milk. Lactoferrin is also released from neutrophil granules, and its concentration increases rapidly at the site of inflammation. Immune cells of both the innate and the adaptive immune system express receptors for lactoferrin to modulate their functions in response to it. On the basis of these interactions, lactoferrin plays many roles in host defense, ranging from augmenting or calming inflammatory pathways to direct killing of pathogens. Complex biological activities of lactoferrin are determined by its ability to sequester iron and by its highly basic N-terminus, via which lactoferrin binds to a plethora of negatively charged surfaces of microorganisms and viruses, as well as to mammalian cells, both normal and cancerous. Proteolytic cleavage of lactoferrin in the digestive tract generates smaller peptides, such as N-terminally derived lactoferricin. Lactoferricin shares some of the properties of lactoferrin, but also exhibits unique characteristics and functions. In this review, we discuss the structure, functions, and potential therapeutic uses of lactoferrin, lactoferricin, and other lactoferrin-derived bioactive peptides in treating various infections and inflammatory conditions. Furthermore, we summarize clinical trials examining the effect of lactoferrin supplementation in disease treatment, with a special focus on its potential use in treating COVID-19

    Journal of Leukocyte Biology / The mannose 6-phosphate/insulin-like growth factor 2 receptor mediates plasminogen-induced efferocytosis

    No full text
    The plasminogen system is harnessed in a wide variety of physiological processes, such as fibrinolysis, cell migration, or efferocytosis; and accordingly, it is essential upon inflammation, tissue remodeling, wound healing, and for homeostatic maintenance in general. Previously, we identified a plasminogen receptor in the mannose 6phosphate/insulinlike growth factor 2 receptor (M6P/IGF2R, CD222). Here, we demonstrate by means of genetic knockdown, knockout, and rescue approaches combined with functional studies that M6P/IGF2R is upregulated on the surface of macrophages, recognizes plasminogen exposed on the surface of apoptotic cells, and mediates plasminogeninduced efferocytosis. The level of uptake of plasminogencoated apoptotic cells inversely correlates with the TNF production by phagocytes indicating tissue clearance without inflammation by this mechanism. Our results reveal an uptonow undetermined function of M6P/IGF2R in clearance of apoptotic cells, which is crucial for tissue homeostasis.(VLID)341171

    video_1_Extracellular Purine Metabolism Is the Switchboard of Immunosuppressive Macrophages and a Novel Target to Treat Diseases With Macrophage Imbalances.mov

    No full text
    <p>If misregulated, macrophage (Mϕ)–T cell interactions can drive chronic inflammation thereby causing diseases, such as rheumatoid arthritis (RA). We report that in a proinflammatory environment, granulocyte-Mϕ (GM-CSF)- and Mϕ colony-stimulating factor (M-CSF)-dependent Mϕs have dichotomous effects on T cell activity. While GM-CSF-dependent Mϕs show a highly stimulatory activity typical for M1 Mϕs, M-CSF-dependent Mϕs, marked by folate receptor β (FRβ), adopt an immunosuppressive M2 phenotype. We find the latter to be caused by the purinergic pathway that directs release of extracellular ATP and its conversion to immunosuppressive adenosine by co-expressed CD39 and CD73. Since we observed a misbalance between immunosuppressive and immunostimulatory Mϕs in human and murine arthritic joints, we devised a new strategy for RA treatment based on targeted delivery of a novel methotrexate (MTX) formulation to the immunosuppressive FRβ<sup>+</sup>CD39<sup>+</sup>CD73<sup>+</sup> Mϕs, which boosts adenosine production and curtails the dominance of proinflammatory Mϕs. In contrast to untargeted MTX, this approach leads to potent alleviation of inflammation in the murine arthritis model. In conclusion, we define the Mϕ extracellular purine metabolism as a novel checkpoint in Mϕ cell fate decision-making and an attractive target to control pathological Mϕs in immune-mediated diseases.</p

    Mannose 6-Phosphate/Insulin-like Growth Factor 2 Receptor Limits Cell Invasion by Controlling αVβ3 Integrin Expression and Proteolytic Processing of Urokinase-type Plasminogen Activator Receptor

    No full text
    The multifunctional mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) is considered a tumor suppressor. We report here that RNA interference with M6P/IGF2R expression in urokinase-type plasminogen activator (uPA)/urokinase-type plasminogen activator receptor (uPAR) expressing human cancer and endothelial cells resulted in increased pericellular plasminogen activation, cell adhesion, and higher invasive potential through matrigel. M6P/IGF2R silencing led also to the cell surface accumulation of urokinase and plasminogen and enhanced expression of αV integrins. Genetic rescue experiments and inhibitor studies revealed that the enhanced plasminogen activation was due to a direct effect of M6P/IGF2R on uPAR, whereas increased cell adhesion to vitronectin was dependent on αV integrin expression and not uPAR. Increased cell invasion of M6P/IGF2R knockdown cells was rescued by cosilencing both uPAR and αV integrin. Furthermore, we found that M6P/IGF2R expression accelerates the cleavage of uPAR. M6P/IGF2R silencing resulted in an increased ratio of full-length uPAR to the truncated D2D3 fragment, incapable of binding most uPAR ligands. We conclude that M6P/IGF2R controls cell invasion by regulating αV integrin expression and by accelerating uPAR cleavage, leading to the loss of the urokinase/vitronectin/integrin-binding site on uPAR

    video_2_Extracellular Purine Metabolism Is the Switchboard of Immunosuppressive Macrophages and a Novel Target to Treat Diseases With Macrophage Imbalances.mov

    No full text
    <p>If misregulated, macrophage (Mϕ)–T cell interactions can drive chronic inflammation thereby causing diseases, such as rheumatoid arthritis (RA). We report that in a proinflammatory environment, granulocyte-Mϕ (GM-CSF)- and Mϕ colony-stimulating factor (M-CSF)-dependent Mϕs have dichotomous effects on T cell activity. While GM-CSF-dependent Mϕs show a highly stimulatory activity typical for M1 Mϕs, M-CSF-dependent Mϕs, marked by folate receptor β (FRβ), adopt an immunosuppressive M2 phenotype. We find the latter to be caused by the purinergic pathway that directs release of extracellular ATP and its conversion to immunosuppressive adenosine by co-expressed CD39 and CD73. Since we observed a misbalance between immunosuppressive and immunostimulatory Mϕs in human and murine arthritic joints, we devised a new strategy for RA treatment based on targeted delivery of a novel methotrexate (MTX) formulation to the immunosuppressive FRβ<sup>+</sup>CD39<sup>+</sup>CD73<sup>+</sup> Mϕs, which boosts adenosine production and curtails the dominance of proinflammatory Mϕs. In contrast to untargeted MTX, this approach leads to potent alleviation of inflammation in the murine arthritis model. In conclusion, we define the Mϕ extracellular purine metabolism as a novel checkpoint in Mϕ cell fate decision-making and an attractive target to control pathological Mϕs in immune-mediated diseases.</p

    presentation_1_Extracellular Purine Metabolism Is the Switchboard of Immunosuppressive Macrophages and a Novel Target to Treat Diseases With Macrophage Imbalances.PDF

    No full text
    <p>If misregulated, macrophage (Mϕ)–T cell interactions can drive chronic inflammation thereby causing diseases, such as rheumatoid arthritis (RA). We report that in a proinflammatory environment, granulocyte-Mϕ (GM-CSF)- and Mϕ colony-stimulating factor (M-CSF)-dependent Mϕs have dichotomous effects on T cell activity. While GM-CSF-dependent Mϕs show a highly stimulatory activity typical for M1 Mϕs, M-CSF-dependent Mϕs, marked by folate receptor β (FRβ), adopt an immunosuppressive M2 phenotype. We find the latter to be caused by the purinergic pathway that directs release of extracellular ATP and its conversion to immunosuppressive adenosine by co-expressed CD39 and CD73. Since we observed a misbalance between immunosuppressive and immunostimulatory Mϕs in human and murine arthritic joints, we devised a new strategy for RA treatment based on targeted delivery of a novel methotrexate (MTX) formulation to the immunosuppressive FRβ<sup>+</sup>CD39<sup>+</sup>CD73<sup>+</sup> Mϕs, which boosts adenosine production and curtails the dominance of proinflammatory Mϕs. In contrast to untargeted MTX, this approach leads to potent alleviation of inflammation in the murine arthritis model. In conclusion, we define the Mϕ extracellular purine metabolism as a novel checkpoint in Mϕ cell fate decision-making and an attractive target to control pathological Mϕs in immune-mediated diseases.</p
    corecore