29 research outputs found
Anatomic variation of cranial parasympathetic ganglia
Having broad knowledge of anatomy is essential for practicing dentistry. Certain anatomical structures call for detailed studies due to their anatomical and functional importance. Nevertheless, some structures are difficult to visualize and identify due to their small volume and complicated access. Such is the case of the parasympathetic ganglia located in the cranial part of the autonomic nervous system, which include: the ciliary ganglion (located deeply in the orbit, laterally to the optic nerve), the pterygopalatine ganglion (located in the pterygopalatine fossa), the submandibular ganglion (located laterally to the hyoglossus muscle, below the lingual nerve), and the otic ganglion (located medially to the mandibular nerve, right beneath the oval foramen). The aim of this study was to present these structures in dissected anatomic specimens and perform a comparative analysis regarding location and morphology. The proximity of the ganglia and associated nerves were also analyzed, as well as the number and volume of fibers connected to them. Human heads were dissected by planes, partially removing the adjacent structures to the point we could reach the parasympathetic ganglia. With this study, we concluded that there was no significant variation regarding the location of the studied ganglia. Morphologically, our observations concur with previous classical descriptions of the parasympathetic ganglia, but we observed variations regarding the proximity of the otic ganglion to the mandibular nerve. We also observed that there were variations regarding the number and volume of fiber bundles connected to the submandibular, otic, and pterygopalatine ganglia
ELECTROMYOGRAPHIC ACTIVITY OF THE VASTUS MEDIALIS OBLIQUE AND VASTUS LATERALIS LONGUS MM. DURING OPEN AND CLOSED KINETIC CHAIN EXERCISES
OBJECTIVES: The purpose of this study was to analyze the electromyographic activity of the Vastus Medialis Oblique (VMO) and Vastus Lateralis Longus (VLL) muscles during knee extension in Open Kinetic Chain Exercise, using a ‘knee extension table’, and in Closed Kinetic Chain Exercise, using a Horizontal Leg-Press (VITALLY).
METHODS: The electromyographic activity of the VMO and VLL muscles was measured in 12 subjects between 18 and 23 years old (x=21.9 e SD=1.16), without prior hip, knee, and ankle pathologies, during Maximal Isometric Contraction (MCI) at 90º flexion of hip and knee. A 16-Channel EMG System (CAD 12/36 - 60 K - LINX) and differential surface electrodes (DELSYS) were used to obtain the data. The signal was recorded in Root Mean Square (RMS) and expressed in microvolts. The data analysis was performed through Student’s t-test at a 5% level of significance.
RESULTS: The results showed that the electromyographic activity of the VMO muscle was significantly greater than that of the VLL muscle during Open and Closed Kinetic Chain Exercises.
CONCLUSIONS: The data of this study, within the experimental conditions used, suggest that the VMO muscle can recover functionally by MCI at 90º flexion of hip and knee during Open Kinetic Chain Exercise, using an ‘extension table’, and also in Closed Kinetic Chain Exercise, using a Horizontal Leg-Press. This research was conducted in accordance with the National Council of Health (Resolution 196/96)
CELLULAR DEVELOPMENT AND HISTOCHEMICAL ASPECTS OF THE NASSANOFF GLANDS UNDER JUVENILE HORMONE ACTION
The Nassanoff glands are responsible for synthesis of species-specific pheromones, and secretory substances responsible for the colony scent. In the present work the Nassanoff glands of 12 and 25 day-old Apis mellifera workers were treated with juvenile hormone (JH) just after emerging, were studied through morphometric and histological analyses and compared to those of non-treated workers. The results showed that although JH administration caused an acceleration of worker maturation, it failed to affect the developmental pattern of the Nassanoff glands, showing that the period of administration of the JH is inappropriate to cause any influence to this pattern.
Keywords: Apis mellifera, histology, juvenile hormone, morphometry, Nassanoff glands
Influência da posição do braço na relação EMG-força em músculos do braço
The relationship between myoelectric signal amplitude and muscle strength (EMG-force) has been used as an indirect measure of muscle strength. The aim of this study, in 18 healthy, female, right-handed volunteers, was to assess the influence of arm position on the relationship EMG-force of arm muscles in three different tasks: arm flexion, arm abduction, and neutral arm position. Both myoelectric signals and strength measures were acquired simultaneously, by coupling a load-cell to the electromyograph transducer. Signals from the biceps brachii, braquioradialis, and triceps brachii muscles were analysed, and arm extension and flexion force was estimated. Relationships between these values were statistically analysed, searching for a correlation between myoelectric signal amplitude and muscle strength. Results showed no such correlation could be found during any of the tasks. Arm position did not influence EMG-force of the assessed muscles, to the exception of the triceps brachii muscle, which showed greater activity in the neutral arm task as compared to the other tasks. In isometric contractions, the tasks may be used to activate biceps brachii and braquioradialis; neutral arm position is indicated to activate the triceps brachii muscle.A relação entre a amplitude do sinal eletromiográfico e a força muscular (EMG-força) tem sido tomada como medida indireta da força muscular. Este estudo, em 18 voluntárias saudáveis e destras, visou avaliar a influência da posição do braço na relação EMG-força em músculos do braço em três tarefas - flexão do braço (FB), abdução do braço (AB) e neutra do braço (NB) - enquanto se tomavam ambas as medidas: uma célula de carga foi acoplada ao conversor do eletromiógrafo para registrar simultaneamente força e sinal eletromiográfico. Foram analisados os sinais dos músculos bíceps braquial, braquiorradial e tríceps braquial, e estimada a força de flexão e de extensão do braço nas diferentes tarefas. A relação entre esses conjuntos de valores foi analisada estatisticamente, verificando se havia correlação entre força e sinal eletromiográfico. Os resultados mostraram não haver tal correlação nas tarefas avaliadas. A posição do braço não influenciou a relação EMG-força dos músculos avaliados, com exceção do tríceps braquial, cuja atividade eletromiográfica foi maior durante a tarefa NB. Conclui-se que, em isometria, as tarefas podem ser empregadas para ativar o bíceps braquial e o braquiorradial; a tarefa NB é a mais indicada para ativar o tríceps braquial
Eletromiografia do músculo trapézio após intervenção do alongamento miofascial.
A flexibilidade essencial ao ser humano, visto que a expressibilidade corprea se d por meio do movimento. Os hbitos sedentrios so os maiores responsveis pela perda da flexibilidade, resultando na adaptao dos tecidos conectivos, o que contribui para movimentos corporais incorretos. Esse fator gera estresse mecnico e predispe leses do aparelho locomotor. O presente trabalho objetivou analisar por meio de eletromiografia de superfcie (EMG) o mtodo teraputico de alongamento miofascial. Fizeram parte da pesquisa quinze voluntrios de ambos os sexos, faixa etrias entre 20 e 35 anos, no praticantes de atividade especfica para os membros superiores e sem histria prvia de distrbios da coluna cervical. A poro descendente do msculo trapzio dos voluntrios foi avaliado pr e ps-procedimento de alongamento miofascial e subsequentemente comparados. Os indivduos permaneceram sentados em uma cadeira de teste e realizaram elevao do ombro contra resistncia oferecida por meio de duas ferramentas distintas: 1 - transdutor de fora (clula de carga) e, 2 - pesos, ambos simularam a fora da gravidade. Os resultados mostraram uma diminuio na atividade eletromiogrfica da poro descendente do msculo trapzio depois do procedimento. Em concluso o mtodo de alongamento miofascial diminuiu a atividade eltrica do msculo trapzio alterando a atividade do fuso muscular
Atividade elétrica dos músculos vasto mediai oblíquo e vasto lateral longo durante exercícios isométricos e isotônicos
The purpose of this work was to evaluate if the vastus medialis oblique (VMO) muscle had greater electrical activity than the vastus lateralis longus (VLL) muscle during exercises of maximal resistence isometric contraction (MRIC) and maximal resistence isotonic contraction (MRIsotC) performed in Leg-Press (VITALLY). The electrical activity of the VMO and VLL muscles was investigate in 12 adult volunteers no sedentary (X= 21.9; SD= 1.16), without prior hip, knee and ankle pathologies, using a 16-channel Electromyographic System and program of Data Aquisition (Digital Analogue Conversor - CAD 12/36 - 60K - AqDados 4.6 - LYNX Tecnologia Eletrônica Ltda) and differential surface electrodes (DELSYS Inc.). The electromyographic records were measured by root mean square (RMS), in |J,V, and normalized as percentage of maximal voluntary isometric contraction (MVIC) of knee extension obtained in a flexion-extension table. The statistical analysis employed was the Wilcoxon test at 5% level of significance. The results showed that there was no difference between the electrical activity of the VMO and VLL muscles for both exercises studied (MRIC p=0.872; MRIsotC p=0.855). The data of this research, within the experimental conditions used, suggest that the VMO muscle can't be selectively recovered in relation to the VLL muscle by exercises of MRIC and MRIsotC.O objetivo deste trabalho foi avaliar se o músculo vasto mediai oblíquo (VMO) teria maior atividade elétrica do que o músculo vasto lateral longo (VLL), durante exercício de contração isométrica com resistência máxima (CIRM) e o de contração isotônica com resistência máxima (CIsotRM) realizado no equipamento Leg-Press (VITALLY). A atividade elétrica dos músculos VMO e VLL foi investigada em 12 voluntários adultos não sedentários (21,9 ± 1,16), sem patologias das articulações do quadril, joelho e tornozelo, por meio de um Conversor Analógico-Digital de 16 canais com programa de Aquisição de Dados (CAD 12/36-60K-AqDados 4 . 6 - LYNX Tecnologia Eletrônica Ltda) e eletrodos diferenciais de superfície (DELSYS Inc.). Os registros eletromiográficos foram expressos pela raiz quadrada da média (RMS), em JJ.V, e normalizados como porcentagem da contração isométrica voluntária máxima (CIVM) de extensão do joelho obtida em uma mesa flexo-extensora. A análise estatística empregada foi o teste de Wilcoxon em nível de 5% de significância. Os resultados mostraram que não houve diferença estatisticamente significativa (CIRM p = 0,872; CIsotRM p = 0,855) entre a atividade elétrica dos músculos VMO e VLL em nenhum dos exercícios estudados. Os dados desta pesquisa, dentro das condições experimentais utilizadas, sugerem que o músculo VMO não pode ser recuperado seletivamente em relação ao músculo VLL realizando exercícios de CIRM e de CIsotRM no equipamento Leg-Press
A global reference for human genetic variation
The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.We thank the many people who were generous with contributing their samples to the project: the African Caribbean in Barbados; Bengali in Bangladesh; British in England and Scotland; Chinese Dai in Xishuangbanna, China; Colombians in Medellin, Colombia; Esan in Nigeria; Finnish in Finland; Gambian in Western Division – Mandinka; Gujarati Indians in Houston, Texas, USA; Han Chinese in Beijing, China; Iberian populations in Spain; Indian Telugu in the UK; Japanese in Tokyo, Japan; Kinh in Ho Chi Minh City, Vietnam; Luhya in Webuye, Kenya; Mende in Sierra Leone; people with African ancestry in the southwest USA; people with Mexican ancestry in Los Angeles, California, USA; Peruvians in Lima, Peru; Puerto Ricans in Puerto Rico; Punjabi in Lahore, Pakistan; southern Han Chinese; Sri Lankan Tamil in the UK; Toscani in Italia; Utah residents (CEPH) with northern and western European ancestry; and Yoruba in Ibadan, Nigeria. Many thanks to the people who contributed to this project: P. Maul, T. Maul, and C. Foster; Z. Chong, X. Fan, W. Zhou, and T. Chen; N. Sengamalay, S. Ott, L. Sadzewicz, J. Liu, and L. Tallon; L. Merson; O. Folarin, D. Asogun, O. Ikpwonmosa, E. Philomena, G. Akpede, S. Okhobgenin, and O. Omoniwa; the staff of the Institute of Lassa Fever Research and Control (ILFRC), Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria; A. Schlattl and T. Zichner; S. Lewis, E. Appelbaum, and L. Fulton; A. Yurovsky and I. Padioleau; N. Kaelin and F. Laplace; E. Drury and H. Arbery; A. Naranjo, M. Victoria Parra, and C. Duque; S. Däkel, B. Lenz, and S. Schrinner; S. Bumpstead; and C. Fletcher-Hoppe. Funding for this work was from the Wellcome Trust Core Award 090532/Z/09/Z and Senior Investigator Award 095552/Z/11/Z (P.D.), and grants WT098051 (R.D.), WT095908 and WT109497 (P.F.), WT086084/Z/08/Z and WT100956/Z/13/Z (G.M.), WT097307 (W.K.), WT0855322/Z/08/Z (R.L.), WT090770/Z/09/Z (D.K.), the Wellcome Trust Major Overseas program in Vietnam grant 089276/Z.09/Z (S.D.), the Medical Research Council UK grant G0801823 (J.L.M.), the UK Biotechnology and Biological Sciences Research Council grants BB/I02593X/1 (G.M.) and BB/I021213/1 (A.R.L.), the British Heart Foundation (C.A.A.), the Monument Trust (J.H.), the European Molecular Biology Laboratory (P.F.), the European Research Council grant 617306 (J.L.M.), the Chinese 863 Program 2012AA02A201, the National Basic Research program of China 973 program no. 2011CB809201, 2011CB809202 and 2011CB809203, Natural Science Foundation of China 31161130357, the Shenzhen Municipal Government of China grant ZYC201105170397A (J.W.), the Canadian Institutes of Health Research Operating grant 136855 and Canada Research Chair (S.G.), Banting Postdoctoral Fellowship from the Canadian Institutes of Health Research (M.K.D.), a Le Fonds de Recherche duQuébec-Santé (FRQS) research fellowship (A.H.), Genome Quebec (P.A.), the Ontario Ministry of Research and Innovation – Ontario Institute for Cancer Research Investigator Award (P.A., J.S.), the Quebec Ministry of Economic Development, Innovation, and Exports grant PSR-SIIRI-195 (P.A.), the German Federal Ministry of Education and Research (BMBF) grants 0315428A and 01GS08201 (R.H.), the Max Planck Society (H.L., G.M., R.S.), BMBF-EPITREAT grant 0316190A (R.H., M.L.), the German Research Foundation (Deutsche Forschungsgemeinschaft) Emmy Noether Grant KO4037/1-1 (J.O.K.), the Beatriu de Pinos Program grants 2006 BP-A 10144 and 2009 BP-B 00274 (M.V.), the Spanish National Institute for Health Research grant PRB2 IPT13/0001-ISCIII-SGEFI/FEDER (A.O.), Ewha Womans University (C.L.), the Japan Society for the Promotion of Science Fellowship number PE13075 (N.P.), the Louis Jeantet Foundation (E.T.D.), the Marie Curie Actions Career Integration grant 303772 (C.A.), the Swiss National Science Foundation 31003A_130342 and NCCR “Frontiers in Genetics” (E.T.D.), the University of Geneva (E.T.D., T.L., G.M.), the US National Institutes of Health National Center for Biotechnology Information (S.S.) and grants U54HG3067 (E.S.L.), U54HG3273 and U01HG5211 (R.A.G.), U54HG3079 (R.K.W., E.R.M.), R01HG2898 (S.E.D.), R01HG2385 (E.E.E.), RC2HG5552 and U01HG6513 (G.T.M., G.R.A.), U01HG5214 (A.C.), U01HG5715 (C.D.B.), U01HG5718 (M.G.), U01HG5728 (Y.X.F.), U41HG7635 (R.K.W., E.E.E., P.H.S.), U41HG7497 (C.L., M.A.B., K.C., L.D., E.E.E., M.G., J.O.K., G.T.M., S.A.M., R.E.M., J.L.S., K.Y.), R01HG4960 and R01HG5701 (B.L.B.), R01HG5214 (G.A.), R01HG6855 (S.M.), R01HG7068 (R.E.M.), R01HG7644 (R.D.H.), DP2OD6514 (P.S.), DP5OD9154 (J.K.), R01CA166661 (S.E.D.), R01CA172652 (K.C.), P01GM99568 (S.R.B.), R01GM59290 (L.B.J., M.A.B.), R01GM104390 (L.B.J., M.Y.Y.), T32GM7790 (C.D.B., A.R.M.), P01GM99568 (S.R.B.), R01HL87699 and R01HL104608 (K.C.B.), T32HL94284 (J.L.R.F.), and contracts HHSN268201100040C (A.M.R.) and HHSN272201000025C (P.S.), Harvard Medical School Eleanor and Miles Shore Fellowship (K.L.), Lundbeck Foundation Grant R170-2014-1039 (K.L.), NIJ Grant 2014-DN-BX-K089 (Y.E.), the Mary Beryl Patch Turnbull Scholar Program (K.C.B.), NSF Graduate Research Fellowship DGE-1147470 (G.D.P.), the Simons Foundation SFARI award SF51 (M.W.), and a Sloan Foundation Fellowship (R.D.H.). E.E.E. is an investigator of the Howard Hughes Medical Institute