8 research outputs found

    Modélisation in vitro des effets de toxiques environnementaux responsables de sécheresse oculaire, sur des cellules épithéliales et des neurones sensoriels trigéminés

    No full text
    The ocular surface epithelia are at the forefront for protecting the eye from external aggressions, especially from the increasingly polluted and toxic environments that are implicated in the growing incidence of dry eye disease. The conjunctiva and even more, the cornea, innervated by the neurons of the trigeminal ganglia, respond to these aggressions by the establishment of inflammatory and nociceptive processes. Among the pollutants to which we are the most exposed are formaldehyde (FA) and benzalkonium chloride (BAK). We have tested in vitro on corneal and conjunctival epithelial cells and on trigeminal neurons, the toxic effects of these two xenobiotics. In a first study, we cultured in an air-liquid interface, WKD human conjunctival epithelial cells to expose them to a FA flow modeling a toxic stress. In a second study, we evaluated the interactions between epithelial cells and trigeminal neurons following toxic stress. Thus, a primary culture of trigeminal neurons was exposed to a conditioned medium produced by HCE human corneal epithelial cells previously exposed to BAK. In a third study, we developed a microfluidics compartmentalization model to culture trigeminal neurons, in order to study neuronal responses during BAK toxic stress only applied to the axonal endings. All together, our results highlight cellular and molecular mechanisms involved in some examples of ocular surface toxic stress.Les Ă©pithĂ©liums de la surface oculaire sont en premiĂšre ligne pour protĂ©ger l'Ɠil des agressions extĂ©rieures, notamment des environnements aujourd’hui de plus en plus polluĂ©s et toxiques responsables de l’augmentation de l’incidence de la sĂ©cheresse oculaire. La cornĂ©e et la conjonctive, innervĂ©es par les neurones du ganglion trigĂ©minĂ© vont rĂ©pondre Ă  ces agressions par la mise en place de processus inflammatoires et nociceptifs. Parmi les polluants auxquels nous sommes le plus exposĂ©s se trouvent le formaldĂ©hyde gazeux (FA) et le chlorure de benzalkonium (BAK). Nous avons testĂ© in vitro les effets toxiques de ces deux xĂ©nobiotiques sur des cellules Ă©pithĂ©liales cornĂ©ennes et conjonctivales et sur des neurones trigĂ©minĂ©s. Dans une premiĂšre Ă©tude, nous avons cultivĂ© en interface air-liquide, des cellules Ă©pithĂ©liales conjonctivales humaines de la lignĂ©e WKD afin de pouvoir les exposer Ă  un flux de FA modĂ©lisant un stress toxique. Dans une deuxiĂšme Ă©tude, nous avons Ă©valuĂ© les interactions entre cellules Ă©pithĂ©liales et neurones trigĂ©minĂ©s suite Ă  un stress toxique. Ainsi, une culture primaire de neurones trigĂ©minĂ©s a Ă©tĂ© exposĂ©e Ă  un milieu conditionnĂ© (CM) produit par des cellules Ă©pithĂ©liales cornĂ©ennes de la lignĂ©e HCE prĂ©alablement exposĂ©es Ă  du BAK. Dans une troisiĂšme Ă©tude, nous avons dĂ©veloppĂ© un modĂšle de compartimentalisation en microfluidique des neurones trigĂ©minĂ©s, afin d'Ă©tudier les rĂ©ponses neuronales lors d’un stress toxique au BAK appliquĂ© au niveau des terminaisons axonales. Ainsi, l’ensemble de nos rĂ©sultats met en exergue des mĂ©canismes cellulaires et molĂ©culaires mis en jeu lors d'un stress toxique sur la surface oculaire

    In vitro modeling of the effects of environmental toxicants responsible for dry eye disease, on epithelial cells and trigeminal sensory neurons

    No full text
    Les Ă©pithĂ©liums de la surface oculaire sont en premiĂšre ligne pour protĂ©ger l'Ɠil des agressions extĂ©rieures, notamment des environnements aujourd’hui de plus en plus polluĂ©s et toxiques responsables de l’augmentation de l’incidence de la sĂ©cheresse oculaire. La cornĂ©e et la conjonctive, innervĂ©es par les neurones du ganglion trigĂ©minĂ© vont rĂ©pondre Ă  ces agressions par la mise en place de processus inflammatoires et nociceptifs. Parmi les polluants auxquels nous sommes le plus exposĂ©s se trouvent le formaldĂ©hyde gazeux (FA) et le chlorure de benzalkonium (BAK). Nous avons testĂ© in vitro les effets toxiques de ces deux xĂ©nobiotiques sur des cellules Ă©pithĂ©liales cornĂ©ennes et conjonctivales et sur des neurones trigĂ©minĂ©s. Dans une premiĂšre Ă©tude, nous avons cultivĂ© en interface air-liquide, des cellules Ă©pithĂ©liales conjonctivales humaines de la lignĂ©e WKD afin de pouvoir les exposer Ă  un flux de FA modĂ©lisant un stress toxique. Dans une deuxiĂšme Ă©tude, nous avons Ă©valuĂ© les interactions entre cellules Ă©pithĂ©liales et neurones trigĂ©minĂ©s suite Ă  un stress toxique. Ainsi, une culture primaire de neurones trigĂ©minĂ©s a Ă©tĂ© exposĂ©e Ă  un milieu conditionnĂ© (CM) produit par des cellules Ă©pithĂ©liales cornĂ©ennes de la lignĂ©e HCE prĂ©alablement exposĂ©es Ă  du BAK. Dans une troisiĂšme Ă©tude, nous avons dĂ©veloppĂ© un modĂšle de compartimentalisation en microfluidique des neurones trigĂ©minĂ©s, afin d'Ă©tudier les rĂ©ponses neuronales lors d’un stress toxique au BAK appliquĂ© au niveau des terminaisons axonales. Ainsi, l’ensemble de nos rĂ©sultats met en exergue des mĂ©canismes cellulaires et molĂ©culaires mis en jeu lors d'un stress toxique sur la surface oculaire.The ocular surface epithelia are at the forefront for protecting the eye from external aggressions, especially from the increasingly polluted and toxic environments that are implicated in the growing incidence of dry eye disease. The conjunctiva and even more, the cornea, innervated by the neurons of the trigeminal ganglia, respond to these aggressions by the establishment of inflammatory and nociceptive processes. Among the pollutants to which we are the most exposed are formaldehyde (FA) and benzalkonium chloride (BAK). We have tested in vitro on corneal and conjunctival epithelial cells and on trigeminal neurons, the toxic effects of these two xenobiotics. In a first study, we cultured in an air-liquid interface, WKD human conjunctival epithelial cells to expose them to a FA flow modeling a toxic stress. In a second study, we evaluated the interactions between epithelial cells and trigeminal neurons following toxic stress. Thus, a primary culture of trigeminal neurons was exposed to a conditioned medium produced by HCE human corneal epithelial cells previously exposed to BAK. In a third study, we developed a microfluidics compartmentalization model to culture trigeminal neurons, in order to study neuronal responses during BAK toxic stress only applied to the axonal endings. All together, our results highlight cellular and molecular mechanisms involved in some examples of ocular surface toxic stress

    Modélisation in vitro des effets de toxiques environnementaux responsables de sécheresse oculaire, sur des cellules épithéliales et des neurones sensoriels trigéminés

    No full text
    The ocular surface epithelia are at the forefront for protecting the eye from external aggressions, especially from the increasingly polluted and toxic environments that are implicated in the growing incidence of dry eye disease. The conjunctiva and even more, the cornea, innervated by the neurons of the trigeminal ganglia, respond to these aggressions by the establishment of inflammatory and nociceptive processes. Among the pollutants to which we are the most exposed are formaldehyde (FA) and benzalkonium chloride (BAK). We have tested in vitro on corneal and conjunctival epithelial cells and on trigeminal neurons, the toxic effects of these two xenobiotics. In a first study, we cultured in an air-liquid interface, WKD human conjunctival epithelial cells to expose them to a FA flow modeling a toxic stress. In a second study, we evaluated the interactions between epithelial cells and trigeminal neurons following toxic stress. Thus, a primary culture of trigeminal neurons was exposed to a conditioned medium produced by HCE human corneal epithelial cells previously exposed to BAK. In a third study, we developed a microfluidics compartmentalization model to culture trigeminal neurons, in order to study neuronal responses during BAK toxic stress only applied to the axonal endings. All together, our results highlight cellular and molecular mechanisms involved in some examples of ocular surface toxic stress.Les Ă©pithĂ©liums de la surface oculaire sont en premiĂšre ligne pour protĂ©ger l'Ɠil des agressions extĂ©rieures, notamment des environnements aujourd’hui de plus en plus polluĂ©s et toxiques responsables de l’augmentation de l’incidence de la sĂ©cheresse oculaire. La cornĂ©e et la conjonctive, innervĂ©es par les neurones du ganglion trigĂ©minĂ© vont rĂ©pondre Ă  ces agressions par la mise en place de processus inflammatoires et nociceptifs. Parmi les polluants auxquels nous sommes le plus exposĂ©s se trouvent le formaldĂ©hyde gazeux (FA) et le chlorure de benzalkonium (BAK). Nous avons testĂ© in vitro les effets toxiques de ces deux xĂ©nobiotiques sur des cellules Ă©pithĂ©liales cornĂ©ennes et conjonctivales et sur des neurones trigĂ©minĂ©s. Dans une premiĂšre Ă©tude, nous avons cultivĂ© en interface air-liquide, des cellules Ă©pithĂ©liales conjonctivales humaines de la lignĂ©e WKD afin de pouvoir les exposer Ă  un flux de FA modĂ©lisant un stress toxique. Dans une deuxiĂšme Ă©tude, nous avons Ă©valuĂ© les interactions entre cellules Ă©pithĂ©liales et neurones trigĂ©minĂ©s suite Ă  un stress toxique. Ainsi, une culture primaire de neurones trigĂ©minĂ©s a Ă©tĂ© exposĂ©e Ă  un milieu conditionnĂ© (CM) produit par des cellules Ă©pithĂ©liales cornĂ©ennes de la lignĂ©e HCE prĂ©alablement exposĂ©es Ă  du BAK. Dans une troisiĂšme Ă©tude, nous avons dĂ©veloppĂ© un modĂšle de compartimentalisation en microfluidique des neurones trigĂ©minĂ©s, afin d'Ă©tudier les rĂ©ponses neuronales lors d’un stress toxique au BAK appliquĂ© au niveau des terminaisons axonales. Ainsi, l’ensemble de nos rĂ©sultats met en exergue des mĂ©canismes cellulaires et molĂ©culaires mis en jeu lors d'un stress toxique sur la surface oculaire

    Benzalkonium chloride-induced direct and indirect toxicity on corneal epithelial and trigeminal neuronal cells: proinflammatory and apoptotic responses in vitro

    No full text
    International audienceBenzalkonium chloride (BAK), a quaternary ammonium compound widely used as disinfecting agent as well as preservative in eye drops is known to induce toxic effects on the ocular surface with inflammation and corneal nerve damage leading to dry eye disease (DED) in the medium-to-long term. The aim of this study was to evaluate in vitro the toxicity of a conditioned medium produced by corneal epithelial cells previously exposed to BAK (BAK-CM) on trigeminal neuronal cells. A human corneal epithelial (HCE) cell line was exposed to 5.10-3% BAK (i.e. 0.005% BAK) for 15 min and let recover for 5 h to prepare a BAK-CM. This BAK concentration is the lowest one found in eye drops. After this recovery period, BAK effect on HCE cells displayed cytotoxicity, morphological alteration, apoptosis, oxidative stress, ATP release, CCL2 and IL6 gene induction, as well as an increase in CCL2, IL-6 and MIF release. Next, a mouse trigeminal ganglion primary culture was exposed to the BAK-CM for 2 h, 4 h or 24 h. Whereas BAK-CM did not alter neuronal cell morphology, or induced neuronal cytotoxicity or oxidative stress, BAK-CM induced gene expression of Fos (neuronal activation marker), Atf3 (neuronal injury marker), Ccl2 and Il6 (inflammatory markers). Two and 4 h BAK-CM exposure promoted a neuronal damage (ATF-3, phospho-p38 increases; phospho-Stat3 decreases) while 24 h-BAK-CM exposure initiated a prosurvival pathway activation (phospho-p44/42, phospho-Akt increases; ATF-3, GADD153, active Caspase-3 decreases). In conclusion, this in vitro model, simulating paracrine mechanisms, represents an interesting tool to highlight the indirect toxic effects of BAK or any other xenobiotic on corneal trigeminal neurons and may help to better understand the cellular mechanisms that occur during DED pathophysiology
    corecore