62 research outputs found

    Improved change detection with nearby hands

    Get PDF
    Recent studies have suggested altered visual processing for objects that are near the hands. We present three experiments that test whether an observer’s hands near the display facilitate change detection. While performing the task, observers placed both hands either near or away from the display. When their hands were near the display, change detection performance was more accurate and they held more items in visual short-term memory (experiment 1). Performance was equally improved for all regions across the entire display, suggesting a stronger attentional engagement over all visual stimuli regardless of their relative distances from the hands (experiment 2). Interestingly, when only one hand was placed near the display, we found no facilitation from the left hand and a weak facilitation from the right hand (experiment 3). Together, these data suggest that the right hand is the main source of facilitation, and both hands together produce a nonlinear boost in performance (superadditivity) that cannot be explained by either hand alone. In addition, the presence of the right hand biased observers to attend to the right hemifield first, resulting in a right-bias in change detection performance (experiments 2 and 3)

    Perception, Action, and Roelofs Effect: A Mere Illusion of Dissociation

    Get PDF
    A prominent and influential hypothesis of vision suggests the existence of two separate visual systems within the brain, one creating our perception of the world and another guiding our actions within it. The induced Roelofs effect has been described as providing strong evidence for this perception/action dissociation: When a small visual target is surrounded by a large frame positioned so that the frame's center is offset from the observer's midline, the perceived location of the target is shifted in the direction opposite the frame's offset. In spite of this perceptual mislocalization, however, the observer can accurately guide movements to the target location. Thus, perception is prone to the illusion while actions seem immune. Here we demonstrate that the Roelofs illusion is caused by a frame-induced transient distortion of the observer's apparent midline. We further demonstrate that actions guided to targets within this same distorted egocentric reference frame are fully expected to be accurate, since the errors of target localization will exactly cancel the errors of motor guidance. These findings provide a mechanistic explanation for the various perceptual and motor effects of the induced Roelofs illusion without requiring the existence of separate neural systems for perception and action. Given this, the behavioral dissociation that accompanies the Roelofs effect cannot be considered evidence of a dissociation of perception and action. This indicates a general need to re-evaluate the broad class of evidence purported to support this hypothesized dissociation

    A Judd illusion in far-aiming: evidence of a contribution to action by vision for perception

    Get PDF
    The present study addresses the role of vision for perception in determining the location of a target in far-aiming. Participants (N = 12) slid a disk toward a distant target embedded in illusory Judd figures. Additionally, in a perception task, participants indicated when a moving pointer reached the midpoint of the Judd figures. The number of hits, the number of misses to the left and to the right of the target, the sliding error (in mm) and perceptual judgment error (in mm) served as dependent variables. Results showed an illusory bias in sliding, the magnitude of which was comparable to the bias in the perception of target location. The determination of target location in far-aiming is thus based on relative metrics. We argue that vision for perception sets the boundary constraints for action and that within these constraints vision for action autonomously controls movement execution, but alternative accounts are discussed as well
    corecore