4 research outputs found

    Genomic instability in human cancer: molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition

    Get PDF
    Genomic instability can initiate cancer, augment progression, and influence the overall prognosis of the affected patient. Genomic instability arises from many different pathways, such as telomere damage, centrosome amplification, epigenetic modifications, and DNA damage from endogenous and exogenous sources, and can be perpetuating, or limiting, through the induction of mutations or aneuploidy, both enabling and catastrophic. Many cancer treatments induce DNA damage to impair cell division on a global scale but it is accepted that personalized treatments, those that are tailored to the particular patient and type of cancer, must also be developed. In this review, we detail the mechanisms from which genomic instability arises and can lead to cancer, as well as treatments and measures that prevent genomic instability or take advantage of the cellular defects caused by genomic instability. In particular, we identify and discuss five priority targets against genomic instability: (1) prevention of DNA damage; (2) enhancement of DNA repair; (3) targeting deficient DNA repair; (4) impairing centrosome clustering; and, (5) inhibition of telomerase activity. Moreover, we highlight vitamin D and B, selenium, carotenoids, PARP inhibitors, resveratrol, and isothiocyanates as priority approaches against genomic instability. The prioritized target sites and approaches were cross validated to identify potential synergistic effects on a number of important areas of cancer biology

    Guide and Position of the International Society of Nutrigenetics/Nutrigenomics on Personalised Nutrition : Part 1 - Fields of Precision Nutrition

    Get PDF
    Diversity in the genetic profile between individuals and specific ethnic groups affects nutrient requirements, metabolism and response to nutritional and dietary interventions. Indeed, individuals respond differently to lifestyle interventions (diet, physical activity, smoking, etc.). The sequencing of the human genome and subsequent increased knowledge regarding human genetic variation is contributing to the emergence of personalized nutrition. These advances in genetic science are raising numerous questions regarding the mode that precision nutrition can contribute solutions to emerging problems in public health, by reducing the risk and prevalence of nutrition-related diseases. Current views on personalized nutrition encompass omics technologies (nutrigenomics, transcriptomics, epigenomics, foodomics, metabolomics, metagenomics, etc.), functional food development and challenges related to legal and ethical aspects, application in clinical practice, and population scope, in terms of guidelines and epidemiological factors. In this context, precision nutrition can be considered as occurring at three levels: (1) conventional nutrition based on general guidelines for population groups by age, gender and social determinants; (2) individualized nutrition that adds phenotypic information about the person's current nutritional status (e.g. anthropometry, biochemical and metabolic analysis, physical activity, among others), and (3) genotype-directed nutrition based on rare or common gene variation. Research and appropriate translation into medical practice and dietary recommendations must be based on a solid foundation of knowledge derived from studies on nutrigenetics and nutrigenomics. A scientific society, such as the International Society of Nutrigenetics/Nutrigenomics (ISNN), internationally devoted to the study of nutrigenetics/nutrigenomics, can indeed serve the commendable roles of (1) promoting science and favoring scientific communication and (2) permanently working as a 'clearing house' to prevent disqualifying logical jumps, correct or stop unwarranted claims, and prevent the creation of unwarranted expectations in patients and in the general public. In this statement, we are focusing on the scientific aspects of disciplines covering nutrigenetics and nutrigenomics issues. Genetic screening and the ethical, legal, social and economic aspects will be dealt with in subsequent statements of the Society

    Designing a broad-spectrum integrative approach for cancer prevention and treatment.

    Get PDF
    Targeted therapies and the consequent adoption of "personalized" oncology have achieved notable successes in some cancers; however, significant problems remain with this approach. Many targeted therapies are highly toxic, costs are extremely high, and most patients experience relapse after a few disease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistant immortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are not reliant upon the same mechanisms as those which have been targeted). To address these limitations, an international task force of 180 scientists was assembled to explore the concept of a low-toxicity "broad-spectrum" therapeutic approach that could simultaneously target many key pathways and mechanisms. Using cancer hallmark phenotypes and the tumor microenvironment to account for the various aspects of relevant cancer biology, interdisciplinary teams reviewed each hallmark area and nominated a wide range of high-priority targets (74 in total) that could be modified to improve patient outcomes. For these targets, corresponding low-toxicity therapeutic approaches were then suggested, many of which were phytochemicals. Proposed actions on each target and all of the approaches were further reviewed for known effects on other hallmark areas and the tumor microenvironment. Potential contrary or procarcinogenic effects were found for 3.9% of the relationships between targets and hallmarks, and mixed evidence of complementary and contrary relationships was found for 7.1%. Approximately 67% of the relationships revealed potentially complementary effects, and the remainder had no known relationship. Among the approaches, 1.1% had contrary, 2.8% had mixed and 62.1% had complementary relationships. These results suggest that a broad-spectrum approach should be feasible from a safety standpoint. This novel approach has potential to be relatively inexpensive, it should help us address stages and types of cancer that lack conventional treatment, and it may reduce relapse risks. A proposed agenda for future research is offered.Multiple funders. See acknowledgments within article for details.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.semcancer.2015.09.00

    Designing a broad-spectrum integrative approach for cancer prevention and treatment

    No full text
    corecore