13 research outputs found

    Reviews and Syntheses: Ocean acidification and its potential impacts on marine ecosystems

    Get PDF
    Ocean acidification, a complex phenomenon that lowers seawater pH, is the net outcome of several contributions. They include the dissolution of increasing atmospheric CO2 that adds up with dissolved inorganic carbon (dissolved CO2, H2CO3, HCO3−, and CO32−) generated upon mineralization of primary producers (PP) and dissolved organic matter (DOM). The aquatic processes leading to inorganic carbon are substantially affected by increased DOM and nutrients via terrestrial runoff, acidic rainfall, increased PP and algal blooms, nitrification, denitrification, sulfate reduction, global warming (GW), and by atmospheric CO2 itself through enhanced photosynthesis. They are consecutively associated with enhanced ocean acidification, hypoxia in acidified deeper seawater, pathogens, algal toxins, oxidative stress by reactive oxygen species, and thermal stress caused by longer stratification periods as an effect of GW. We discuss the mechanistic insights into the aforementioned processes and pH changes, with particular focus on processes taking place with different timescales (including the diurnal one) in surface and subsurface seawater. This review also discusses these collective influences to assess their potential detrimental effects to marine organisms, and of ecosystem processes and services. Our review of the effects operating in synergy with ocean acidification will provide a broad insight into the potential impact of acidification itself on biological processes. The foreseen danger to marine organisms by acidification is in fact expected to be amplified by several concurrent and interacting phenomena

    Phototransformation Induced by HO Radicals

    No full text
    The hydroxyl radical (HO•) is a strong oxidizing agent that can transform dissolved organic matter (DOM) into many intermediate photoproducts and byproducts, which include low molecular weight (LMW) DOM, hydrogen peroxide (H2O2), CO2, dissolved inorganic carbon (DIC: dissolved CO2, H2CO3, HCO3−, and CO32−), NO3−, NH4+, and so on, in surface waters. Furthermore, HO• has a prominent role in the transformation of recalcitrant pollutants into more biodegradable compounds. This chapter discusses the key sources of HO• in natural waters and elucidates the phototransformation pathways of high molecular weight (HMW) and low molecular weight (LMW) DOM induced by HO•. As an example, the photooxidation of methylmercury chloride (MeHgCl) by hydroxyl radicals is discussed along with its reaction mechanism. Among the possible indicators of DOM transformation, the decrease in the fluorescence intensity of autochthonous fulvic acid is discussed based on field observations. The presented results suggest that HO• may be involved in the photooxidation of both HMW and LMW DOM in surface waters

    Oxygen isotopes (delta O-18) trace photochemical hydrocarbon oxidation at the sea surface

    No full text
    Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(12), (2019): 6745-6754, doi:10.1029/2019GL082867.Although photochemical oxidation is an environmental process that drives organic carbon (OC) cycling, its quantitative detection remains analytically challenging. Here, we use samples from the Deepwater Horizon oil spill to test the hypothesis that the stable oxygen isotope composition of oil (δ18OOil) is a sensitive marker for photochemical oxidation. In less than one‐week, δ18OOil increased from −0.6 to 7.2‰, a shift representing ~25% of the δ18OOC dynamic range observed in nature. By accounting for different oxygen sources (H2O or O2) and kinetic isotopic fractionation of photochemically incorporated O2, which was −9‰ for a wide range of OC sources, a mass balance was established for the surface oil's elemental oxygen content and δ18O. This δ18O‐based approach provides novel insights into the sources and pathways of hydrocarbon photo‐oxidation, thereby improving our understanding of the fate and transport of petroleum hydrocarbons in sunlit waters, and our capacity to respond effectively to future spills.We thank Robert Ricker and Greg Baker (NOAA) for helping secure the oil residues, James Payne (Payne Environmental Consultants, Inc.) for collecting many of the surface oil residues, Joy Matthews (UC Davis) for exceptional assistance in preparing and analyzing the oil residues for oxygen content and isotopes, Hank Levi and Art Gatenby at CSC Scientific Company for assistance with the water content measurements, Robyn Comny (US EPA) for providing the Alaska North Slope oil, and Rose Cory (UMich) for discussions about our findings. Special thanks to John Hayes who provided constructive feedback on a preliminary version of this dataset prior to his passing in February of 2017. We thank Alex Sessions (CalTech) for his constructive feedback during the review process. This work was supported, in part, by National Science Foundation grants RAPID OCE‐1043976 (CMR), OCE‐1333148 (CMR), OCE‐1333026 (CMS), OCE‐1333162 (DLV), OCE‐1841092 (CPW), NASA NESSF NNX15AR62H (KMS), the Gulf of Mexico Research Initiative grants ‐ 015, SA 16‐30, and DEEP‐C consortium, a fellowship through the Hansewissenschaftskolleg (Institute for Advanced Studies) to SDW, and assistant scientist salary support from the Frank and Lisina Hoch Endowed Fund (CPW).2019-11-3
    corecore